#ifndef TZEROFINDER_H
#define TZEROFINDER_H
#include <cmath>
#include <assert.h>
enum {
FZ_OK = 0,
FZ_FTOL = 1,
FZ_XTOL = 2,
FZ_MAX_ITER = 3,
FZ_NOT_ZERO = 4
};
/*
//Daniele
// Use the one at the end instead. This may overshoot - plus, it does not
// bisecate the interval... (I suppose it has never been used much :) )
template< class unaryOp ,
class unaryOpDerivate>
bool findZero_Newton ( double x0 ,
double x1 ,
unaryOp f ,
unaryOpDerivate fd1 ,
double xtol ,
double ftol ,
int maxIter ,
double &x ,
int &err )
{
double f_x_n_plus_1 = 0.0 ;
double f_x_n = f(x1) ;
double f_x_n_minus_1 = f(x0) ;
if( f_x_n*f_x_n_minus_1 > 0 )
{
err = FZ_NOT_ZERO;
return false;
}
int i;
err=FZ_OK;
if( f_x_n == 0 ||
f_x_n_minus_1 == 0 )
{
x = (f_x_n == 0.0) ? x1 : x0;
err = FZ_OK;
return true;
}
double x_n_plus_1 ;
double x_n ;
double x_n_minus_1 ;
x_n = x1;
x_n_minus_1 = x0;
for(i=0;i<maxIter;++i)
{
// the firts time x_n = x1
double fd1_x_n = fd1(x_n);
assert( fd1_x_n != 0.0 );
x_n_plus_1 = x_n - f_x_n / fd1_x_n;
if( fabs(x_n - x_n_plus_1) < xtol )
{
err=FZ_XTOL;
break;
}
f_x_n_plus_1 = f(x_n_plus_1);
if( fabs(f_x_n_plus_1) < ftol )
{
err=FZ_FTOL;
break;
}
x_n_minus_1 = x_n;
x_n = x_n_plus_1;
f_x_n = f_x_n_plus_1;
}
x=x_n_plus_1;
err = (i == maxIter ? FZ_MAX_ITER : err);
return true;
}
*/
//-----------------------------------------------------------------------------
/*!
Bisection algorithm.
Get an object and a method of object class.
x1 and x2 are extremes of test and xtol
is the accuracy.
Return:
the minimum or,
-2 if min it's unreacheable.
-1 if min does not exist
Remark:
Max iterations numbers is fixed to 100 in in maxIter.
This value fix the accuracy to 2e-100.
From Numerical Recipes.
*/
template <class unaryOp>
bool findZero_bisection(double x0,
double x1,
unaryOp f,
double xtol,
int maxIter,
double &x,
int &err)
{
int i;
err = FZ_OK;
double dx, fx0, fmid, xmid, rtb;
fx0 = f(x0);
fmid = f(x1);
if (fx0 * fmid > 0.0) {
err = FZ_NOT_ZERO;
return false;
}
if (fx0 == 0 ||
fmid == 0) {
x = (fmid == 0.0) ? x1 : x0;
err = FZ_OK;
return true;
}
rtb = fx0 < 0.0 ? (dx = x1 - x0, x0) : (dx = x0 - x1, x1);
for (i = 1; i <= maxIter; i++) {
fmid = f(xmid = rtb + (dx *= 0.5));
if (fmid <= 0.0)
rtb = xmid;
if (fabs(dx) < xtol || fmid == 0.0) {
x = rtb;
err = FZ_XTOL;
break;
}
}
err = (i == maxIter ? FZ_MAX_ITER : err);
return true;
}
template <class unaryOp>
bool findZero_secant(double x0,
double x1,
unaryOp f,
double xtol,
double ftol,
int maxIter,
double &x,
int &err)
{
double f_x_n_plus_1 = 0.0,
f_x_n = f(x1),
f_x_n_minus_1 = f(x0);
if (f_x_n * f_x_n_minus_1 > 0) {
err = FZ_NOT_ZERO;
return false;
}
int i;
err = FZ_OK;
if (f_x_n == 0 ||
f_x_n_minus_1 == 0) {
x = (f_x_n == 0.0) ? x1 : x0;
return true;
}
double x_n_plus_1 = x1,
x_n = x1,
x_n_minus_1 = x0;
for (i = 0; i < maxIter; ++i) {
double den = f_x_n - f_x_n_minus_1;
assert(den != 0.0);
if (den == 0.0) {
x_n = x_n_plus_1;
err = FZ_FTOL;
break;
}
x_n_plus_1 = x_n - (x_n - x_n_minus_1) * f_x_n / den;
if (fabs(x_n - x_n_plus_1) < xtol) {
err = FZ_XTOL;
break;
}
f_x_n_plus_1 = f(x_n_plus_1);
if (fabs(f_x_n_plus_1) < ftol) {
err = FZ_FTOL;
break;
}
x_n_minus_1 = x_n;
x_n = x_n_plus_1;
f_x_n_minus_1 = f_x_n;
f_x_n = f_x_n_plus_1;
}
x = x_n_plus_1;
err = (i == maxIter ? FZ_MAX_ITER : err);
return true;
}
template <class unaryOp1, class unaryOp2>
bool findZero_Newton(double x0,
double x1,
unaryOp1 f,
unaryOp2 f1,
double xtol,
double ftol,
int maxIter,
double &x,
int &err)
{
double f_0 = f(x0);
double f_1 = f(x1);
double f_x_n = f_0, f_x_n_plus_1 = 0.0;
bool s_0 = (f_0 > 0);
bool s_1 = (f_1 > 0);
bool s_n;
if (s_0 && s_1) {
err = FZ_NOT_ZERO;
return false;
}
int i;
err = FZ_OK;
if (f_0 == 0 ||
f_1 == 0) {
x = (f_1 == 0.0) ? x1 : x0;
return true;
}
double x_n = x1, x_n_plus_1;
for (i = 0; i < maxIter; ++i) {
double den = f1(x_n);
if (den > 1e-2)
x_n_plus_1 = x_n - f_x_n / den;
if (den <= 1e-2 || x0 > x_n_plus_1 || x1 < x_n_plus_1)
x_n_plus_1 = 0.5 * (x0 + x1);
if (fabs(x_n - x_n_plus_1) < xtol) {
err = FZ_XTOL;
break;
}
f_x_n_plus_1 = f(x_n_plus_1);
if (fabs(f_x_n_plus_1) < ftol) {
err = FZ_FTOL;
break;
}
x_n = x_n_plus_1;
f_x_n = f_x_n_plus_1;
s_n = (f_x_n > 0);
if (s_n == s_0)
x0 = x_n;
else
x1 = x_n;
}
x = x_n_plus_1;
err = (i == maxIter ? FZ_MAX_ITER : err);
return true;
}
#endif