Blob Blame Raw


/*----------------------------------------------------------------------------*
 |                                                                            |
 |                                   avl.c                                    |
 |                                                                            |
 |                by W.T.  11-MAR-91, last revision 11-OCT-96                 |
 |                                                                            |
 *----------------------------------------------------------------------------*/

#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4113)
#pragma warning(disable : 4996)
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define AVL_C
#include "avl.h"
#include "tcm.h"

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

//#define NIL ((void *)0)

typedef unsigned long ulong;

#ifndef MACOSX

typedef unsigned int uint;
typedef unsigned short ushort;

#endif

typedef struct avl_node NODE;
typedef struct avl_path PATH;

#define MBR_KEY (AVL_NODUP_MBR >> 1)
#define PTR_KEY (AVL_NODUP_PTR >> 1)
#define STR_KEY (AVL_NODUP_STR >> 1)
#define LNG_KEY (AVL_NODUP_LNG >> 1)
#define INT_KEY (AVL_NODUP_INT >> 1)
#define SHT_KEY (AVL_NODUP_SHT >> 1)
#define ULN_KEY (AVL_NODUP_ULN >> 1)
#define UIN_KEY (AVL_NODUP_UIN >> 1)
#define USH_KEY (AVL_NODUP_USH >> 1)
#define CHR_KEY (AVL_NODUP_CHR >> 1)

#define USR_CMP 0
#define STR_CMP 1
#define VAL_CMP 2
#define COR_CMP 3

#define NODUP 0
#define DUP 1

#define USR_NODUP (USR_CMP | NODUP << 2)
#define STR_NODUP (STR_CMP | NODUP << 2)
#define VAL_NODUP (VAL_CMP | NODUP << 2)
#define COR_NODUP (COR_CMP | NODUP << 2)
#define USR_DUP (USR_CMP | DUP << 2)
#define STR_DUP (STR_CMP | DUP << 2)
#define VAL_DUP (VAL_CMP | DUP << 2)
#define COR_DUP (COR_CMP | DUP << 2)

/* keyinfo: bits 6-3: KEYTYPE, bit 2: DUP, bits 1-0: CMPTYPE */
/*                bits 6-2: TREETYPE, bits 2-0: LOCTYPE      */

#define KEYTYPE(keyinfo) ((keyinfo) >> 3)
#define TREETYPE(keyinfo) ((keyinfo) >> 2)
#define CMPTYPE(keyinfo) ((keyinfo)&0x3)
#define LOCTYPE(keyinfo) ((keyinfo)&0x7)

#define MAXUSHORT (((unsigned short)(~0)) >> 1)

#define MINLONG ((long)~(((unsigned long)(~0L)) >> 1))

#define CORRECT(u) ((long)(u) + MINLONG)

#ifdef VAX
#define SET_STRCMP(cmp, str1, str2)                                            \
  {                                                                            \
    char *p1, *p2;                                                             \
    for (p1 = (str1), p2 = (str2); *p1 && *p1 == *p2; p1++, p2++)              \
      ;                                                                        \
    (cmp) = *(unsigned char *)p1 - *(unsigned char *)p2;                       \
  }
#else
#define SET_STRCMP(cmp, str1, str2)                                            \
  { (cmp) = strcmp((str1), (str2)); }
#endif

#define SET_PTRCMP(cmp, usrcmp, ptr1, ptr2)                                    \
  {                                                                            \
    if (usrcmp)                                                                \
      (cmp) = (*(usrcmp))((ptr1), (ptr2));                                     \
    else                                                                       \
      SET_STRCMP((cmp), (char *)(ptr1), (char *)(ptr2))                        \
  }

#define ERROR (-1)

#define BAL 0
#define LEFT 1
#define RIGHT 2
#define LEFTUNBAL 3
#define RIGHTUNBAL 4

#define LESS 3
#define SAME 4

#define NOTINS 0
#define INS 1
#define DEEPER 2

#define NODE_LIST 0
#define TREE_LIST (NODE_LIST + (sizeof(NODE) != sizeof(TREE)))
#define PATH_LIST (TREE_LIST + 1)
#define FREE_LISTS (PATH_LIST + 1)

#define LONG_ALIGNED_SIZE(obj)                                                 \
  ((sizeof(obj) + sizeof(long) - 1) & ~(sizeof(long) - 1))

#define SIZEOF_NODE LONG_ALIGNED_SIZE(NODE)
#define SIZEOF_TREE LONG_ALIGNED_SIZE(TREE)
#define SIZEOF_PATH LONG_ALIGNED_SIZE(PATH)
#define SIZEOF_LONG sizeof(long)

#define PREALLOC_LONGS (0x7FF0 / SIZEOF_LONG)
#define PREALLOC_SIZE (PREALLOC_LONGS * SIZEOF_LONG)
#define MALLOC_LONGS (0x7FE0 / SIZEOF_LONG)
#define MALLOC_SIZE (MALLOC_LONGS * SIZEOF_LONG)

static long Prealloc[PREALLOC_LONGS];

static void *Free_List[FREE_LISTS]; /* init to 0 by C */
static char *Avail_Base = (char *)Prealloc;
static uint Avail_Size  = PREALLOC_SIZE;

/*===========================================================================*/

static void *new_memory(uint size) {
  char *base;

  while (Avail_Size >= SIZEOF_NODE) {
    base                 = Avail_Base + (Avail_Size -= SIZEOF_NODE);
    *(void **)base       = Free_List[NODE_LIST];
    Free_List[NODE_LIST] = (void *)base;
  }
  if ((Avail_Base = (char *)malloc(MALLOC_SIZE))) {
    Avail_Size = MALLOC_SIZE - size;
    return (void *)(Avail_Base + Avail_Size);
  } else {
    Avail_Size = 0;
    return NIL;
  }
}

/*---------------------------------------------------------------------------*/

#define ALLOC_OBJ(ptr, ptr_type, size, list)                                   \
  {                                                                            \
    if (Free_List[list]) {                                                     \
      (ptr)           = (ptr_type)Free_List[list];                             \
      Free_List[list] = *(void **)(ptr);                                       \
    } else if (Avail_Size >= size)                                             \
      (ptr) = (ptr_type)(Avail_Base + (Avail_Size -= size));                   \
    else                                                                       \
      (ptr) = (ptr_type)new_memory(size);                                      \
  }

#define FREE_OBJ(ptr, list)                                                    \
  {                                                                            \
    *(void **)(ptr) = Free_List[list];                                         \
    Free_List[list] = (void *)(ptr);                                           \
  }

#define ALLOC_NODE(node) ALLOC_OBJ(node, NODE *, SIZEOF_NODE, NODE_LIST)
#define ALLOC_TREE(tree) ALLOC_OBJ(tree, TREE *, SIZEOF_TREE, TREE_LIST)
#define ALLOC_PATH(path) ALLOC_OBJ(path, PATH *, SIZEOF_PATH, PATH_LIST)

#define FREE_NODE(node) FREE_OBJ(node, NODE_LIST)
#define FREE_TREE(tree) FREE_OBJ(tree, TREE_LIST)
#define FREE_PATH(path) FREE_OBJ(path, PATH_LIST)

/*===========================================================================*/

TREE *avl__tree(int treetype, uint keyoffs, int (*usrcmp)(void *, void *)) {
  TREE *tree;
  int keyinfo;

  keyinfo = treetype << 2;
  switch (treetype) {
  case AVL_NODUP_MBR:
  case AVL_DUP_MBR:
    keyinfo |= USR_CMP;
    break;
  case AVL_NODUP_PTR:
  case AVL_DUP_PTR:
    keyinfo |= USR_CMP;
    break;
  case AVL_NODUP_STR:
  case AVL_DUP_STR:
    keyinfo |= STR_CMP;
    break;
  case AVL_NODUP_LNG:
  case AVL_DUP_LNG:
    keyinfo |= VAL_CMP;
    break;
  case AVL_NODUP_INT:
  case AVL_DUP_INT:
    keyinfo |= VAL_CMP;
    break;
  case AVL_NODUP_SHT:
  case AVL_DUP_SHT:
    keyinfo |= VAL_CMP;
    break;
  case AVL_NODUP_ULN:
  case AVL_DUP_ULN:
    keyinfo |= COR_CMP;
    break;
  case AVL_NODUP_UIN:
  case AVL_DUP_UIN:
    keyinfo |= COR_CMP;
    break;
  case AVL_NODUP_USH:
  case AVL_DUP_USH:
    keyinfo |= VAL_CMP;
    break;
  case AVL_NODUP_CHR:
  case AVL_DUP_CHR:
    keyinfo |= VAL_CMP;
    break;
  default:
    return NIL;
  }
  ALLOC_TREE(tree)
  if (!tree) return NIL;
  tree->root    = NIL;
  tree->keyinfo = (ushort)keyinfo;
  tree->keyoffs = (ushort)keyoffs;
  tree->usrcmp  = usrcmp;
  tree->nodes   = 0L;
  tree->path    = NIL;

  return tree;
}

/*===========================================================================*/

static int rebalance(NODE **rootaddr) {
  NODE *root = *rootaddr;
  NODE *newroot;
  NODE *half;

  switch (root->bal) {
  case LEFTUNBAL:
    switch (root->left->bal) {
    case LEFT: /* simple rotation, tree depth decreased */
      newroot        = root->left;
      root->left     = newroot->right;
      root->bal      = BAL;
      newroot->right = root;
      newroot->bal   = BAL;
      *rootaddr      = newroot;
      return LESS;

    case BAL: /* simple rotation, tree depth unchanged */
      newroot        = root->left;
      root->left     = newroot->right;
      root->bal      = LEFT;
      newroot->right = root;
      newroot->bal   = RIGHT;
      *rootaddr      = newroot;
      return SAME;

    case RIGHT: /* double rotation */
      half        = root->left;
      newroot     = half->right;
      root->left  = newroot->right;
      half->right = newroot->left;
      switch (newroot->bal) {
      case BAL:
        root->bal = BAL;
        half->bal = BAL;
        break;
      case LEFT:
        root->bal = RIGHT;
        half->bal = BAL;
        break;
      case RIGHT:
        root->bal = BAL;
        half->bal = LEFT;
        break;
      }
      newroot->left  = half;
      newroot->right = root;
      newroot->bal   = BAL;
      *rootaddr      = newroot;
      return LESS;
    }
    break;
  case RIGHTUNBAL:
    switch (root->right->bal) {
    case RIGHT: /* simple rotation, tree depth decreased */
      newroot       = root->right;
      root->right   = newroot->left;
      root->bal     = BAL;
      newroot->left = root;
      newroot->bal  = BAL;
      *rootaddr     = newroot;
      return LESS;

    case BAL: /* simple rotation, tree depth unchanged */
      newroot       = root->right;
      root->right   = newroot->left;
      root->bal     = RIGHT;
      newroot->left = root;
      newroot->bal  = LEFT;
      *rootaddr     = newroot;
      return SAME;

    case LEFT: /* double rotation */
      half        = root->right;
      newroot     = half->left;
      root->right = newroot->left;
      half->left  = newroot->right;
      switch (newroot->bal) {
      case BAL:
        root->bal = BAL;
        half->bal = BAL;
        break;
      case RIGHT:
        root->bal = LEFT;
        half->bal = BAL;
        break;
      case LEFT:
        root->bal = BAL;
        half->bal = RIGHT;
        break;
      }
      newroot->right = half;
      newroot->left  = root;
      newroot->bal   = BAL;
      *rootaddr      = newroot;
      return LESS;
    }
    break;
  default:
    return SAME;
  }
  return ERROR;
}

/*===========================================================================*/

static int insert_ptr(NODE **rootaddr, NODE *node,
                      int (*usrcmp)(void *, void *), int dup) {
  NODE *root = *rootaddr;
  int cmp;
  int ins;

  SET_PTRCMP(cmp, usrcmp, node->key.ptr, root->key.ptr)
  if (cmp < 0) {
    if (root->left)
      ins = insert_ptr(&root->left, node, usrcmp, dup);
    else {
      root->left = node;
      ins        = DEEPER;
    }
    switch (ins) {
    case DEEPER:
      switch (root->bal) {
      case RIGHT:
        root->bal = BAL;
        return INS;
      case BAL:
        root->bal = LEFT;
        return DEEPER;
      case LEFT:
        root->bal = LEFTUNBAL;
        return rebalance(rootaddr) == LESS ? INS : DEEPER;
      }
      break;
    case INS:
      return INS;
    case NOTINS:
      return NOTINS;
    }
  } else if (cmp > 0 || dup) {
    if (root->right)
      ins = insert_ptr(&root->right, node, usrcmp, dup);
    else {
      root->right = node;
      ins         = DEEPER;
    }
    switch (ins) {
    case DEEPER:
      switch (root->bal) {
      case LEFT:
        root->bal = BAL;
        return INS;
      case BAL:
        root->bal = RIGHT;
        return DEEPER;
      case RIGHT:
        root->bal = RIGHTUNBAL;
        return rebalance(rootaddr) == LESS ? INS : DEEPER;
      }
      break;
    case INS:
      return INS;
    case NOTINS:
      return NOTINS;
    }
  }
  return NOTINS;
}

/*---------------------------------------------------------------------------*/

static int insert_val(NODE **rootaddr, NODE *node, int dup) {
  NODE *root = *rootaddr;
  int ins;

  if (node->key.val < root->key.val) {
    if (root->left)
      ins = insert_val(&root->left, node, dup);
    else {
      root->left = node;
      ins        = DEEPER;
    }
    switch (ins) {
    case DEEPER:
      switch (root->bal) {
      case RIGHT:
        root->bal = BAL;
        return INS;
      case BAL:
        root->bal = LEFT;
        return DEEPER;
      case LEFT:
        root->bal = LEFTUNBAL;
        return rebalance(rootaddr) == LESS ? INS : DEEPER;
      }
      break;
    case INS:
      return INS;
    case NOTINS:
      return NOTINS;
    }
  } else if (node->key.val > root->key.val || dup) {
    if (root->right) {
      ins = insert_val(&root->right, node, dup);
    } else {
      root->right = node;
      ins         = DEEPER;
    }
    switch (ins) {
    case DEEPER:
      switch (root->bal) {
      case LEFT:
        root->bal = BAL;
        return INS;
      case BAL:
        root->bal = RIGHT;
        return DEEPER;
      case RIGHT:
        root->bal = RIGHTUNBAL;
        return rebalance(rootaddr) == LESS ? INS : DEEPER;
      }
    case INS:
      return INS;
    case NOTINS:
      return NOTINS;
    }
  }
  return NOTINS;
}

/*---------------------------------------------------------------------------*/

int avl_insert(TREE *tree, void *data) {
  NODE *node;
  int keyinfo;
  int ins;

  ALLOC_NODE(node)
  if (!node) return FALSE;
  node->data  = data;
  node->left  = NIL;
  node->right = NIL;
  node->bal   = BAL;
  keyinfo     = tree->keyinfo;

  switch (KEYTYPE(keyinfo)) {
  case MBR_KEY:
    node->key.ptr = (void *)((char *)data + tree->keyoffs);
    break;
  case PTR_KEY:
    node->key.ptr = *(void **)((char *)data + tree->keyoffs);
    break;
  case STR_KEY:
    node->key.ptr = *(void **)((char *)data + tree->keyoffs);
    break;
  case LNG_KEY:
    node->key.val = *(long *)((char *)data + tree->keyoffs);
    break;
  case INT_KEY:
    node->key.val = *(int *)((char *)data + tree->keyoffs);
    break;
  case SHT_KEY:
    node->key.val = *(short *)((char *)data + tree->keyoffs);
    break;
  case ULN_KEY:
    node->key.val = CORRECT(*(ulong *)((char *)data + tree->keyoffs));
    break;
  case UIN_KEY:
    node->key.val = CORRECT(*(uint *)((char *)data + tree->keyoffs));
    break;
  case USH_KEY:
    node->key.val = *(ushort *)((char *)data + tree->keyoffs);
    break;
  case CHR_KEY:
    node->key.val = *((char *)data + tree->keyoffs);
    break;
  default:
    FREE_NODE(node)
    return FALSE;
  }
  if (tree->root) {
    switch (LOCTYPE(keyinfo)) {
    case USR_NODUP:
      ins = insert_ptr(&tree->root, node, tree->usrcmp, NODUP);
      break;
    case STR_NODUP:
      ins = insert_ptr(&tree->root, node, AVL_AVLCMP, NODUP);
      break;
    case COR_NODUP:
    case VAL_NODUP:
      ins = insert_val(&tree->root, node, NODUP);
      break;
    case USR_DUP:
      ins = insert_ptr(&tree->root, node, tree->usrcmp, DUP);
      break;
    case STR_DUP:
      ins = insert_ptr(&tree->root, node, AVL_AVLCMP, DUP);
      break;
    case COR_DUP:
    case VAL_DUP:
      ins = insert_val(&tree->root, node, DUP);
      break;
    }
    if (ins == NOTINS) {
      FREE_NODE(node)
      return FALSE;
    }
  } else {
    tree->root = node;
  }
  tree->nodes++;
  if (tree->path) {
    FREE_PATH(tree->path)
    tree->path = NIL;
  }
  return TRUE;
}

/*===========================================================================*/

#define SELECT_EQ_NODUP(node, val, this)                                       \
  {                                                                            \
    if (this < val)                                                            \
      node = node->right;                                                      \
    else if (val < this)                                                       \
      node = node->left;                                                       \
    else                                                                       \
      return node->data;                                                       \
  }

#define SELECT_EQ_DUP(node, val, this, save)                                   \
  {                                                                            \
    if (this < val)                                                            \
      node = node->right;                                                      \
    else if (val < this)                                                       \
      node = node->left;                                                       \
    else {                                                                     \
      save = node;                                                             \
      node = node->left;                                                       \
    }                                                                          \
  }

#define SELECT_GE_NODUP(node, val, this, save)                                 \
  {                                                                            \
    if (val < this) {                                                          \
      save = node;                                                             \
      node = node->left;                                                       \
    } else if (this < val)                                                     \
      node = node->right;                                                      \
    else                                                                       \
      return node->data;                                                       \
  }

#define SELECT_GE_DUP(node, val, this, save)                                   \
  {                                                                            \
    if (this < val)                                                            \
      node = node->right;                                                      \
    else {                                                                     \
      save = node;                                                             \
      node = node->left;                                                       \
    }                                                                          \
  }

#define SELECT_GT(node, val, this, save)                                       \
  {                                                                            \
    if (val < this) {                                                          \
      save = node;                                                             \
      node = node->left;                                                       \
    } else                                                                     \
      node = node->right;                                                      \
  }

#define SELECT_LE_NODUP(node, val, this, save)                                 \
  {                                                                            \
    if (this < val) {                                                          \
      save = node;                                                             \
      node = node->right;                                                      \
    } else if (val < this)                                                     \
      node = node->left;                                                       \
    else                                                                       \
      return node->data;                                                       \
  }

#define SELECT_LE_DUP(node, val, this, save)                                   \
  {                                                                            \
    if (val < this)                                                            \
      node = node->left;                                                       \
    else {                                                                     \
      save = node;                                                             \
      node = node->right;                                                      \
    }                                                                          \
  }

#define SELECT_LT(node, val, this, save)                                       \
  {                                                                            \
    if (this < val) {                                                          \
      save = node;                                                             \
      node = node->right;                                                      \
    } else                                                                     \
      node = node->left;                                                       \
  }

/*---------------------------------------------------------------------------*/

void *avl__locate(TREE *tree, long keyval) {
  NODE *node;
  NODE *save;
  int (*usrcmp)(void *, void *);
  int cmp;

  node = tree->root;
  switch (LOCTYPE(tree->keyinfo)) {
  case USR_NODUP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_EQ_NODUP(node, cmp, 0);
    }
    break;
  case STR_NODUP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_EQ_NODUP(node, cmp, 0);
    }
    break;
  case COR_NODUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_NODUP:
    while (node) {
      SELECT_EQ_NODUP(node, keyval, node->key.val);
    }
    break;
  case USR_DUP:
    save   = NIL;
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_EQ_DUP(node, cmp, 0, save);
    }
    if (save) {
      return save->data;
    }
    break;
  case STR_DUP:
    save = NIL;
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_EQ_DUP(node, cmp, 0, save);
    }
    if (save) {
      return save->data;
    }
    break;
  case COR_DUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_DUP:
    save = NIL;
    while (node) {
      SELECT_EQ_DUP(node, keyval, node->key.val, save);
    }
    if (save) {
      return save->data;
    }
    break;
  }
  return NIL;
}

/*---------------------------------------------------------------------------*/

void *avl__locate_ge(TREE *tree, long keyval) {
  NODE *node;
  NODE *save;
  int (*usrcmp)(void *, void *);
  int cmp;

  node = tree->root;
  save = NIL;
  switch (LOCTYPE(tree->keyinfo)) {
  case USR_NODUP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_GE_NODUP(node, cmp, 0, save);
    }
    break;
  case STR_NODUP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_GE_NODUP(node, cmp, 0, save);
    }
    break;
  case COR_NODUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_NODUP:
    while (node) {
      SELECT_GE_NODUP(node, keyval, node->key.val, save);
    }
    break;
  case USR_DUP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_GE_DUP(node, cmp, 0, save);
    }
    break;
  case STR_DUP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_GE_DUP(node, cmp, 0, save);
    }
    break;
  case COR_DUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_DUP:
    while (node) {
      SELECT_GE_DUP(node, keyval, node->key.val, save);
    }
    break;
  }
  return save ? save->data : NIL;
}

/*---------------------------------------------------------------------------*/

void *avl__locate_gt(TREE *tree, long keyval) {
  NODE *node;
  NODE *save;
  int (*usrcmp)(void *, void *);
  int cmp;

  node = tree->root;
  save = NIL;
  switch (CMPTYPE(tree->keyinfo)) {
  case USR_CMP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_GT(node, cmp, 0, save);
    }
    break;
  case STR_CMP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_GT(node, cmp, 0, save);
    }
    break;
  case COR_CMP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_CMP:
    while (node) {
      SELECT_GT(node, keyval, node->key.val, save);
    }
    break;
  }
  return save ? save->data : NIL;
}

/*---------------------------------------------------------------------------*/

void *avl__locate_le(TREE *tree, long keyval) {
  NODE *node;
  NODE *save;
  int (*usrcmp)(void *, void *);
  int cmp;

  node = tree->root;
  save = NIL;
  switch (LOCTYPE(tree->keyinfo)) {
  case USR_NODUP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_LE_NODUP(node, cmp, 0, save);
    }
    break;
  case STR_NODUP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_LE_NODUP(node, cmp, 0, save);
    }
    break;
  case COR_NODUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_NODUP:
    while (node) {
      SELECT_LE_NODUP(node, keyval, node->key.val, save);
    }
    break;
  case USR_DUP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_LE_DUP(node, cmp, 0, save);
    }
    break;
  case STR_DUP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_LE_DUP(node, cmp, 0, save);
    }
    break;
  case COR_DUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_DUP:
    while (node) {
      SELECT_LE_DUP(node, keyval, node->key.val, save);
    }
    break;
  }
  return save ? save->data : NIL;
}

/*---------------------------------------------------------------------------*/

void *avl__locate_lt(TREE *tree, long keyval) {
  NODE *node;
  NODE *save;
  int (*usrcmp)(void *, void *);
  int cmp;

  node = tree->root;
  save = NIL;
  switch (CMPTYPE(tree->keyinfo)) {
  case USR_CMP:
    usrcmp = tree->usrcmp;
    while (node) {
      cmp = (*usrcmp)((void *)keyval, node->key.ptr);
      SELECT_LT(node, cmp, 0, save);
    }
    break;
  case STR_CMP:
    while (node) {
      SET_STRCMP(cmp, (char *)keyval, (char *)node->key.ptr);
      SELECT_LT(node, cmp, 0, save);
    }
    break;
  case COR_CMP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_CMP:
    while (node) {
      SELECT_LT(node, keyval, node->key.val, save);
    }
    break;
  }
  return save ? save->data : NIL;
}

/*---------------------------------------------------------------------------*/

void *avl_locate_first(TREE *tree) {
  NODE *node, *leftnode;

  node = tree->root;
  if (!node) return NIL;
  while ((leftnode = node->left)) node = leftnode;
  return node->data;
}

/*---------------------------------------------------------------------------*/

void *avl_locate_last(TREE *tree) {
  NODE *node, *rightnode;

  node = tree->root;
  if (!node) return NIL;
  while ((rightnode = node->right)) node = rightnode;
  return node->data;
}

/*===========================================================================*/

static NODE *leftmost(NODE **rootaddr) {
  NODE *root = *rootaddr;
  NODE *node;

  if (root) {
    if (root->left) {
      node = leftmost(&root->left);
      if (node->bal == LESS) {
        /* left subtree depth decreased */
        switch (root->bal) {
        case LEFT:
          root->bal = BAL;
          break;
        case BAL:
          root->bal = RIGHT;
          node->bal = SAME;
          break;
        case RIGHT:
          root->bal = RIGHTUNBAL;
          node->bal = rebalance(rootaddr);
          break;
        }
      }
      return node;
    } else {
      *rootaddr = root->right;
      root->bal = LESS;
      return root;
    }
  } else
    return NIL;
}

/*---------------------------------------------------------------------------*/

static NODE *remove_ptr(NODE **rootaddr, void *keyptr,
                        int (*usrcmp)(void *, void *), int dup) {
  NODE *root = *rootaddr;
  NODE *node;
  int cmp;

  SET_PTRCMP(cmp, usrcmp, keyptr, root->key.ptr)
  if (cmp < 0) {
    if (!root->left) return NIL;
    node = remove_ptr(&root->left, keyptr, usrcmp, dup);
    if (node && node->bal == LESS) {
      /* left subtree depth decreased */
      switch (root->bal) {
      case LEFT:
        root->bal = BAL;
        break;
      case BAL:
        root->bal = RIGHT;
        node->bal = SAME;
        break;
      case RIGHT:
        root->bal = RIGHTUNBAL;
        node->bal = rebalance(rootaddr);
        break;
      }
    }
  } else if (cmp > 0) {
    if (!root->right) return NIL;
    node = remove_ptr(&root->right, keyptr, usrcmp, dup);
    if (node && node->bal == LESS) {
      /* right subtree depth decreased */
      switch (root->bal) {
      case RIGHT:
        root->bal = BAL;
        break;
      case BAL:
        root->bal = LEFT;
        node->bal = SAME;
        break;
      case LEFT:
        root->bal = LEFTUNBAL;
        node->bal = rebalance(rootaddr);
        break;
      }
    }
  } else {
    if (dup && root->left &&
        (node = remove_ptr(&root->left, keyptr, usrcmp, dup))) {
      if (node->bal == LESS) {
        /* left subtree depth decreased */
        switch (root->bal) {
        case LEFT:
          root->bal = BAL;
          break;
        case BAL:
          root->bal = RIGHT;
          node->bal = SAME;
          break;
        case RIGHT:
          root->bal = RIGHTUNBAL;
          node->bal = rebalance(rootaddr);
          break;
        }
      }
    } else {
      node = root;
      if (!node->right) {
        *rootaddr = node->left;
        node->bal = LESS;
      } else if (!node->left) {
        *rootaddr = node->right;
        node->bal = LESS;
      } else /* replace by the leftmost node of the right subtree */
      {
        root        = leftmost(&node->right);
        root->left  = node->left;
        root->right = node->right;
        if (root->bal == LESS) {
          /* right subtree depth decreased */
          switch (node->bal) {
          case RIGHT:
            root->bal = BAL;
            node->bal = LESS;
            break;
          case BAL:
            root->bal = LEFT;
            node->bal = SAME;
            break;
          case LEFT:
            root->bal = LEFTUNBAL;
            node->bal = rebalance(&root);
            break;
          }
        } else {
          root->bal = node->bal;
          node->bal = SAME;
        }
        *rootaddr = root;
      }
    }
  }
  return node;
}

/*---------------------------------------------------------------------------*/

static NODE *remove_val(NODE **rootaddr, long keyval, int dup) {
  NODE *root = *rootaddr;
  NODE *node;

  if (keyval < root->key.val) {
    if (!root->left) return NIL;
    node = remove_val(&root->left, keyval, dup);
    if (node && node->bal == LESS) {
      /* left subtree depth decreased */
      switch (root->bal) {
      case LEFT:
        root->bal = BAL;
        break;
      case BAL:
        root->bal = RIGHT;
        node->bal = SAME;
        break;
      case RIGHT:
        root->bal = RIGHTUNBAL;
        node->bal = rebalance(rootaddr);
        break;
      }
    }
  } else if (keyval > root->key.val) {
    if (!root->right) return NIL;
    node = remove_val(&root->right, keyval, dup);
    if (node && node->bal == LESS) {
      /* right subtree depth decreased */
      switch (root->bal) {
      case RIGHT:
        root->bal = BAL;
        break;
      case BAL:
        root->bal = LEFT;
        node->bal = SAME;
        break;
      case LEFT:
        root->bal = LEFTUNBAL;
        node->bal = rebalance(rootaddr);
        break;
      }
    }
  } else {
    if (dup && root->left && (node = remove_val(&root->left, keyval, dup))) {
      if (node->bal == LESS) {
        /* left subtree depth decreased */
        switch (root->bal) {
        case LEFT:
          root->bal = BAL;
          break;
        case BAL:
          root->bal = RIGHT;
          node->bal = SAME;
          break;
        case RIGHT:
          root->bal = RIGHTUNBAL;
          node->bal = rebalance(rootaddr);
          break;
        }
      }
    } else {
      node = root;
      if (!node->right) {
        *rootaddr = node->left;
        node->bal = LESS;
      } else if (!node->left) {
        *rootaddr = node->right;
        node->bal = LESS;
      } else /* replace by the leftmost node of the right subtree */
      {
        root        = leftmost(&node->right);
        root->left  = node->left;
        root->right = node->right;
        if (root->bal == LESS) {
          /* right subtree depth decreased */
          switch (node->bal) {
          case RIGHT:
            root->bal = BAL;
            node->bal = LESS;
            break;
          case BAL:
            root->bal = LEFT;
            node->bal = SAME;
            break;
          case LEFT:
            root->bal = LEFTUNBAL;
            node->bal = rebalance(&root);
            break;
          }
        } else {
          root->bal = node->bal;
          node->bal = SAME;
        }
        *rootaddr = root;
      }
    }
  }
  return node;
}

/*---------------------------------------------------------------------------*/

void *avl__remove(TREE *tree, long keyval) {
  NODE *node;
  void *data;

  if (tree->root) {
    switch (LOCTYPE(tree->keyinfo)) {
    case USR_NODUP:
      node = remove_ptr(&tree->root, (void *)keyval, tree->usrcmp, NODUP);
      break;
    case STR_NODUP:
      node = remove_ptr(&tree->root, (void *)keyval, AVL_AVLCMP, NODUP);
      break;
    case COR_NODUP:
      keyval = CORRECT(keyval);
    // fallthrough
    case VAL_NODUP:
      node = remove_val(&tree->root, keyval, NODUP);
      break;
    case USR_DUP:
      node = remove_ptr(&tree->root, (void *)keyval, tree->usrcmp, DUP);
      break;
    case STR_DUP:
      node = remove_ptr(&tree->root, (void *)keyval, AVL_AVLCMP, DUP);
      break;
    case COR_DUP:
      keyval = CORRECT(keyval);
    // fallthrough
    case VAL_DUP:
      node = remove_val(&tree->root, keyval, DUP);
      break;
    }
    if (node) {
      tree->nodes--;
      if (tree->path) {
        FREE_PATH(tree->path)
        tree->path = NIL;
      }
      data = node->data;
      FREE_NODE(node)
      return data;
    }
  }
  return NIL;
}

/*===========================================================================*/

static void scan_subtree(NODE *root, void (*usrfun)(void *)) {
  if (root->left) scan_subtree(root->left, usrfun);
  (*usrfun)(root->data);
  if (root->right) scan_subtree(root->right, usrfun);
}

/*---------------------------------------------------------------------------*/

static void backscan_subtree(NODE *root, void (*usrfun)(void *)) {
  if (root->right) backscan_subtree(root->right, usrfun);
  (*usrfun)(root->data);
  if (root->left) backscan_subtree(root->left, usrfun);
}

/*---------------------------------------------------------------------------*/

void avl__scan(TREE *tree, void (*usrfun)(void *), int back) {
  if (tree->root) {
    if (back)
      backscan_subtree(tree->root, usrfun);
    else
      scan_subtree(tree->root, usrfun);
  }
}

/*===========================================================================*/

void *avl_first(TREE *tree) {
  PATH *path;
  char *pathright;
  NODE **pathnode;
  NODE *node;

  if (!tree->root) return NIL;
  if (!tree->path) {
    ALLOC_PATH(path)
    if (!path) return NIL;
    tree->path = path;
  } else {
    path = tree->path;
  }
  pathnode     = &path->node[0];
  pathright    = &path->right[1];
  *pathnode    = NIL; /* sentinels */
  *pathright   = TRUE;
  *++pathnode  = NIL;
  *++pathright = FALSE;
  *++pathnode = node = tree->root;
  while ((node = node->left)) {
    *++pathright = FALSE;
    *++pathnode  = node;
  }
  path->pathright = pathright;
  path->pathnode  = pathnode;
  return (*pathnode)->data;
}

/*---------------------------------------------------------------------------*/

void *avl_last(TREE *tree) {
  PATH *path;
  char *pathright;
  NODE **pathnode;
  NODE *node;

  if (!tree->root) return NIL;
  if (!tree->path) {
    ALLOC_PATH(path)
    if (!path) return NIL;
    tree->path = path;
  } else {
    path = tree->path;
  }
  pathnode     = &path->node[0];
  pathright    = &path->right[1];
  *pathnode    = NIL; /* sentinels */
  *pathright   = FALSE;
  *++pathnode  = NIL;
  *++pathright = TRUE;
  *++pathnode = node = tree->root;
  while ((node = node->right)) {
    *++pathright = TRUE;
    *++pathnode  = node;
  }
  path->pathright = pathright;
  path->pathnode  = pathnode;
  return (*pathnode)->data;
}

/*---------------------------------------------------------------------------*/

#define DOWN_RIGHT_OR_BREAK(node, pathright, pathnode)                         \
  {                                                                            \
    if ((node = node->right)) {                                                \
      *++pathright = TRUE;                                                     \
      *++pathnode  = node;                                                     \
    } else                                                                     \
      break;                                                                   \
  }

#define DOWN_LEFT_OR_BREAK(node, pathright, pathnode)                          \
  {                                                                            \
    if ((node = node->left)) {                                                 \
      *++pathright = FALSE;                                                    \
      *++pathnode  = node;                                                     \
    } else                                                                     \
      break;                                                                   \
  }

#define START_OK_AND_RETURN(path, _pathright, _pathnode)                       \
  {                                                                            \
    path->pathright = _pathright;                                              \
    path->pathnode  = _pathnode;                                               \
    return (*_pathnode)->data;                                                 \
  }

/*---------------------------------------------------------------------------*/

void *avl__start(TREE *tree, long keyval, int back) {
  PATH *path;
  char *pathright;
  NODE **pathnode;
  NODE *node;
  char *saveright;
  NODE **savenode;
  int (*usrcmp)(void *, void *);
  int cmp;

  if (!tree->root) return NIL;
  if (!tree->path) {
    ALLOC_PATH(path)
    if (!path) return NIL;
    tree->path = path;
  } else {
    path = tree->path;
  }
  pathnode     = &path->node[0];
  pathright    = &path->right[1];
  saveright    = NIL;
  savenode     = NIL;
  *pathnode    = NIL; /* sentinels */
  *pathright   = !back;
  *++pathnode  = NIL;
  *++pathright = back;
  *++pathnode = node = tree->root;
  switch (LOCTYPE(tree->keyinfo)) {
  case USR_NODUP:
  case STR_NODUP:
    usrcmp = tree->usrcmp;
    if (back) {
      for (;;) {
        SET_PTRCMP(cmp, usrcmp, (void *)keyval, node->key.ptr);
        if (cmp > 0) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        } else if (cmp < 0) {
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        } else {
          START_OK_AND_RETURN(path, pathright, pathnode);
        }
      }
    } else {
      for (;;) {
        SET_PTRCMP(cmp, usrcmp, (void *)keyval, node->key.ptr);
        if (cmp < 0) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        } else if (cmp > 0) {
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        } else {
          START_OK_AND_RETURN(path, pathright, pathnode);
        }
      }
    }
    break;
  case COR_NODUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_NODUP:
    if (back) {
      for (;;) {
        if (keyval > node->key.val) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        } else if (keyval < node->key.val) {
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        } else {
          START_OK_AND_RETURN(path, pathright, pathnode);
        }
      }
    } else {
      for (;;) {
        if (keyval < node->key.val) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        } else if (keyval > node->key.val) {
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        } else {
          START_OK_AND_RETURN(path, pathright, pathnode);
        }
      }
      break;
    }
    break;
  case USR_DUP:
  case STR_DUP:
    usrcmp = tree->usrcmp;
    if (back) {
      for (;;) {
        SET_PTRCMP(cmp, usrcmp, (void *)keyval, node->key.ptr);
        if (cmp >= 0) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        } else {
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        }
      }
    } else {
      for (;;) {
        SET_PTRCMP(cmp, usrcmp, (void *)keyval, node->key.ptr);
        if (cmp <= 0) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        } else {
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        }
      }
    }
    break;
  case COR_DUP:
    keyval = CORRECT(keyval);
  // fallthrough
  case VAL_DUP:
    if (back) {
      for (;;) {
        if (keyval >= node->key.val) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        } else {
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        }
      }
    } else {
      for (;;) {
        if (keyval <= node->key.val) {
          saveright = pathright;
          savenode  = pathnode;
          DOWN_LEFT_OR_BREAK(node, pathright, pathnode);
        } else {
          DOWN_RIGHT_OR_BREAK(node, pathright, pathnode);
        }
      }
    }
    break;
  }
  if (savenode) {
    path->pathright = saveright;
    path->pathnode  = savenode;
    return (*savenode)->data;
  } else {
    FREE_PATH(path)
    tree->path = NIL;
    return NIL;
  }
}

/*---------------------------------------------------------------------------*/

void *avl_next(TREE *tree) {
  PATH *path;
  char *pathright;
  NODE **pathnode;
  NODE *node;

  path = tree->path;
  if (!path) return NIL;
  pathright = path->pathright;
  pathnode  = path->pathnode;
  if ((node = (*pathnode)->right)) {
    *++pathright = TRUE;
    *++pathnode  = node;
    while ((node = node->left)) {
      *++pathright = FALSE;
      *++pathnode  = node;
    }
  } else {
    while (*pathright) {
      --pathright;
      --pathnode;
    }
    --pathright;
    --pathnode;
    if (!*pathnode) {
      FREE_PATH(path)
      tree->path = NIL;
      return NIL;
    }
  }
  path->pathright = pathright;
  path->pathnode  = pathnode;
  return (*pathnode)->data;
}

/*---------------------------------------------------------------------------*/

void *avl_prev(TREE *tree) {
  PATH *path;
  char *pathright;
  NODE **pathnode;
  NODE *node;

  path = tree->path;
  if (!path) return NIL;
  pathright = path->pathright;
  pathnode  = path->pathnode;
  if ((node = (*pathnode)->left)) {
    *++pathright = FALSE;
    *++pathnode  = node;
    while ((node = node->right)) {
      *++pathright = TRUE;
      *++pathnode  = node;
    }
  } else {
    while (!*pathright) {
      --pathright;
      --pathnode;
    }
    --pathright;
    --pathnode;
    if (!*pathnode) {
      FREE_PATH(path)
      tree->path = NIL;
      return NIL;
    }
  }
  path->pathright = pathright;
  path->pathnode  = pathnode;
  return (*pathnode)->data;
}

/*---------------------------------------------------------------------------*/

void avl_stop(TREE *tree) {
  if (tree->path) {
    FREE_PATH(tree->path)
    tree->path = NIL;
  }
}

/*===========================================================================*/

static uint Offset;
static void *Save;

/*---------------------------------------------------------------------------*/

static void link_subtree(NODE *node) {
  if (node->right) link_subtree(node->right);
  *(void **)((char *)node->data + Offset) = Save;
  Save                                    = node->data;
  if (node->left) link_subtree(node->left);
}

/*---------------------------------------------------------------------------*/

static void backlink_subtree(NODE *node) {
  if (node->left) backlink_subtree(node->left);
  *(void **)((char *)node->data + Offset) = Save;
  Save                                    = node->data;
  if (node->right) backlink_subtree(node->right);
}

/*---------------------------------------------------------------------------*/

void *avl__link(TREE *tree, uint ptroffs, int back) {
  Offset = ptroffs;
  Save   = NIL;
  if (tree->root) {
    if (back)
      backlink_subtree(tree->root);
    else
      link_subtree(tree->root);
  }
  return Save;
}

/*===========================================================================*/

static void release_subtree(NODE *root, void (*usrfun)(void *)) {
  if (root->left) release_subtree(root->left, usrfun);
  if (root->right) release_subtree(root->right, usrfun);
  (*usrfun)(root->data);
  FREE_NODE(root)
}

/*---------------------------------------------------------------------------*/

static void reset_subtree(NODE *root) {
  if (root->left) reset_subtree(root->left);
  if (root->right) reset_subtree(root->right);
  FREE_NODE(root)
}

/*---------------------------------------------------------------------------*/

void avl_release(TREE *tree, void (*usrfun)(void *)) {
  if (tree->root) release_subtree(tree->root, usrfun);
  tree->root  = NIL;
  tree->nodes = 0;
  if (tree->path) {
    FREE_PATH(tree->path)
    tree->path = NIL;
  }
}

/*---------------------------------------------------------------------------*/

void avl_reset(TREE *tree) {
  if (tree->root) reset_subtree(tree->root);
  tree->root  = NIL;
  tree->nodes = 0;
  if (tree->path) {
    FREE_PATH(tree->path)
    tree->path = NIL;
  }
}

/*---------------------------------------------------------------------------*/

void avl_close(TREE *tree) {
  if (tree->root) reset_subtree(tree->root);
  if (tree->path) FREE_PATH(tree->path)
  tree->keyinfo = (ushort)ERROR;
  FREE_TREE(tree)
}

/*===========================================================================*/

static int copy_subtree(NODE *newroot, NODE *root) {
  newroot->key  = root->key;
  newroot->data = root->data;
  newroot->bal  = root->bal;

  if (root->left) {
    ALLOC_NODE(newroot->left)
    if (!newroot->left) return FALSE;
    if (!copy_subtree(newroot->left, root->left)) {
      FREE_NODE(newroot->left);
      return FALSE;
    }
  } else
    newroot->left = NIL;

  if (root->right) {
    ALLOC_NODE(newroot->right)
    if (!newroot->right) return FALSE;
    if (!copy_subtree(newroot->right, root->right)) {
      FREE_NODE(newroot->right);
      return FALSE;
    }
  } else
    newroot->right = NIL;

  return TRUE;
}

/*---------------------------------------------------------------------------*/

TREE *avl_copy(TREE *tree) {
  TREE *newtree;

  ALLOC_TREE(newtree)
  if (!newtree) return NIL;
  newtree->keyinfo = tree->keyinfo;
  newtree->keyoffs = tree->keyoffs;
  newtree->usrcmp  = tree->usrcmp;
  newtree->nodes   = tree->nodes;
  newtree->path    = NIL;

  if (tree->root) {
    ALLOC_NODE(newtree->root)
    if (!copy_subtree(newtree->root, tree->root)) {
      FREE_NODE(newtree->root)
      avl_close(newtree);
      return NIL;
    }
  } else {
    newtree->root = NIL;
  }
  return newtree;
}

/*===========================================================================*/

static void **Dat;
static int *Lev;
static int *Pos;
static int Nod;
static int Max_Lev;

/*---------------------------------------------------------------------------*/

static void dump_subtree(struct avl_node *root, int lev, int pos) {
  if (root->left) dump_subtree(root->left, lev + 1, pos * 2);
  Dat[Nod]                   = root->data;
  Lev[Nod]                   = lev;
  Pos[Nod]                   = pos;
  if (lev > Max_Lev) Max_Lev = lev;
  Nod++;
  if (root->right) dump_subtree(root->right, lev + 1, pos * 2 + 1);
}

/*---------------------------------------------------------------------------*/

int avl_dump(TREE *tree, void **dat_vect, int *lev_vect, int *pos_vect) {
  Dat     = dat_vect;
  Lev     = lev_vect;
  Pos     = pos_vect;
  Nod     = 0;
  Max_Lev = -1;
  if (tree->root) dump_subtree(tree->root, 0, 0);
  return Max_Lev + 1;
}

/*===========================================================================*/
#ifdef LEVO
int avl_porting_problems(void) {
  long lng1, lng2;
  ushort ush1, ush2;
  char chr1, chr2;
  void *ptr1, *ptr2;
  struct s {
    char c[4];
  } * ps;
  int problems;

#define PROBLEM(n) (problems |= 1 | (1 << (n)))

  problems = 0;

  Avl_Dummy[0]           = 0.0;
  Avl_Dummy[1]           = 0.0;
  ((char *)Avl_Dummy)[1] = 0x15;
  ptr1                   = (void *)((char *)Avl_Dummy + 1);
  lng1                   = (long)ptr1;
  ptr2                   = (void *)lng1;
  if (*(char *)ptr2 != (char)0x15) PROBLEM(1);

  ps       = (struct s *)malloc(sizeof(struct s));
  ps->c[0] = 0;
  ps->c[1] = 0x15;
  ps->c[2] = 0;
  ps->c[3] = 0;
  ptr1     = (void *)&ps->c[1];
  lng1     = (long)ptr1;
  ptr2     = (void *)lng1;
  if (*(char *)ptr2 != (char)0x15) PROBLEM(2);
  free(ps);

  chr1 = 1;
  chr2 = 250;
  lng1 = chr1;
  lng2 = chr2;
  if ((chr1 > chr2) && (lng1 < lng2) || (chr1 < chr2) && (lng1 > lng2))
    PROBLEM(3);

  if (sizeof(long) == sizeof(short)) PROBLEM(4);

  if (sizeof(char) != 1) PROBLEM(5);

  ush1 = (ushort)-1;
  ush2 = (ushort)-2;
  lng1 = CORRECT(ush1);
  lng2 = CORRECT(ush2);
  if (!(lng1 > lng2)) PROBLEM(6);

  lng1 = CORRECT(0L);
  lng2 = lng1 - 1;
  if (!((lng1 < 0) && (lng2 > 0))) PROBLEM(7);

  return problems;
}
#endif
//-----------------------------------------------------------------------------------------------

#define CDB_TCALLOC(ptr, elem)                                                 \
  { (ptr) = (void *)calloc((elem), sizeof(*(ptr))); }
#define CDB_TMALLOC(ptr, elem)                                                 \
  { (ptr) = (void *)malloc((elem) * sizeof(*(ptr))); }
#define CDB_TREALLOC(ptr, elem)                                                \
  { (ptr) = (void *)realloc((ptr), (elem) * sizeof(*(ptr))); }

#define GET_STRING_FIELD(P, FIELD) (P ? (P->FIELD ? P->FIELD : "") : "")

#define AVL_FOR(tree, p) for ((p) = avl_first(tree); (p); (p) = avl_next(tree))
typedef struct {
  int index;
  char *name;
} COLOR_NAME;

typedef struct {
  char *name;
  char *value;
} CDB_PARAM;

typedef struct {
  char *name;
  int num_params;
  CDB_PARAM *param;
} CDB_EFFECT;

static char *strsave(const char *str) {
  char *neww;
  if (!str) return 0;
  neww = malloc(strlen(str) + 1);

  strcpy(neww, str);
  return neww;
}

/*---------------------------------------------------------------------------*/

static char *strnsave(const char *str, int n) {
  char *neww;

  neww = malloc(n + 1);

  strncpy(neww, str, n);
  neww[n] = '\0';
  return neww;
}

TREE *cdb_decode_all(char *names_in_plt_file, TCM_INFO tcm) {
  TREE *tree;
  char *c1, *c2, *endcol, *endstr, *ct;
  char tmp[100];
  int i, p;
  CDB_TREE_ITEM *item;
  CDB_EFFECT *effect;

  tree = avl_tree_nodup_int(CDB_TREE_ITEM, index);

  item   = NIL;
  endstr = strchr(names_in_plt_file, '\0');
  c1     = names_in_plt_file;
  c2     = NIL;
  for (i = 0; i < tcm.n_colors + tcm.n_pencils; i++) {
    CDB_TCALLOC(item, 1)
    item->index = i;
    // if (i < tcm.n_colors)
    //  item->index = TCM_COLOR_INDEX (tcm, i);
    // else
    //  item->index = TCM_PENCIL_INDEX (tcm, i - tcm.n_colors);

    endcol              = strchr(c1, '|');
    if (!endcol) endcol = endstr;
    c2                  = strchr(c1, '\t');
    if (!c2) c2         = endcol;
    if (*c2 == '\t') {
      if (c2 - c1 == 1 && *c1 == '*')
        item->group = strsave("");
      else
        item->group = strnsave(c1, c2 - c1);
      c1            = c2 + 1;
      c2            = strchr(c1, '\t');
      if (!c2) c2   = endcol;
    } else {
      item->group = strsave("");
    }
    while (*c1 == '<' && c1[1] == '!') {
      c1 += 2;
      ct = strstr(c1, "!>");
      if (!ct) goto error;
      if (*c1 == 'A') {
        c1++;
        item->accelerator = strnsave(c1, ct - c1);
      }
      /* else if (*c1 == 'to be defined')... */
      c1 = ct + 2;
    }
    if (c2 - c1 == 1 && *c1 == '*')
      item->name = strsave("");
    else
      item->name = strnsave(c1, c2 - c1);

    if (*c2 == '\t')
      c1 = c2 + 1;
    else
      c1 = c2;
    if (!*c1) {
    } else if (*c1 == '|')
      c1++;
    else {
      item->effects = avl_tree_nodup_str(CDB_EFFECT, name);
      for (;;) {
        ct = strstr(c1, " ! ");
        if (ct) NOT_MORE_THAN(ct, endcol)
        ct = strstr(c1, "#! ");
        if (ct) NOT_MORE_THAN(ct, endcol)
        c2 = strchr(c1, '#');
        if (!c2 || c2 >= endcol) break;
        CDB_TCALLOC(effect, 1)
        effect->name = strnsave(c1, c2 - c1);

        c1 = c2 + 1;
        c2 = strchr(c1, '#');
        if (!c2) goto error;
        strncpy(tmp, c1, c2 - c1);
        tmp[c2 - c1]       = '\0';
        effect->num_params = atoi(tmp);
        if (effect->num_params) CDB_TCALLOC(effect->param, effect->num_params)
        c1 = c2 + 1;
        for (p = 0; p < effect->num_params; p++) {
          c2 = strchr(c1, '#');
          if (!c2) goto error;
          effect->param[p].name = strnsave(c1, c2 - c1);
          c1                    = c2 + 1;
          c2 = (p == effect->num_params - 1) ? endcol : strstr(c1, " : ");
          if (!c2) goto error;
          effect->param[p].value = strnsave(c1, c2 - c1);
          ct = effect->param[p].value + strlen(effect->param[p].value) - 1;
          while (ct >= effect->param[p].value && (*ct == ' ' || *ct == '\t'))
            *ct-- = '\0';
          c1      = c2 + 3;
        }
        avl_insert(item->effects, effect);
        item->num_effects++;
        if (*endcol != '|')
          c1 = endcol + 3;
        else {
          c1 = endcol + 1;
          break;
        }
      }
    }
    avl_insert(tree, item);
  }
  return tree;

error:

  printf("error parsing color names and fx\n");

  return tree;
}