#include "tcurves.h"
//#include "tpalette.h"
#include "tvectorimage.h"
#include "tvectorimageP.h"
#include "tstroke.h"
//#include "tgl.h"
#include "tvectorrenderdata.h"
#include "tmathutil.h"
//#include "tdebugmessage.h"
#include "tofflinegl.h"
//#include "tcolorstyles.h"
#include "tpaletteutil.h"
#include "tthreadmessage.h"
#include "tsimplecolorstyles.h"
#include "tcomputeregions.h"
#include <memory>
//=============================================================================
typedef TVectorImage::IntersectionBranch IntersectionBranch;
namespace {
typedef std::set<int> DisabledStrokeStyles;
// uso getDisabledStrokeStyleSet() invece che accedere direttamente alla
// variabile per assicurarmi che il tutto funzioni anche quando viene
// usato PRIMA del main (per iniziativa di un costruttore di una variabile
// globale, p.es.).
// per l'idioma: cfr. Modern C++ design, Andrei Alexandrescu, Addison Wesley
// 2001, p.133
inline DisabledStrokeStyles &getDisabledStrokeStyleSet() {
static DisabledStrokeStyles disabledStokeStyles;
return disabledStokeStyles;
}
inline bool isStrokeStyleEnabled__(int index) {
DisabledStrokeStyles &disabledSet = getDisabledStrokeStyleSet();
return disabledSet.find(index) == disabledSet.end();
}
} // namespace
//=============================================================================
/*!
Permette di copiare effettuare delle copie delle curve
*/
/*
template <class Container>
class StrokeArrayInsertIterator
{
Container& container;
public:
explicit StrokeArrayInsertIterator(Container& Line)
:container(Line)
{};
StrokeArrayInsertIterator& operator=(const VIStroke* value )
{
TStroke *stroke = new TStroke(*(value->m_s));
stroke->setId(value->m_s->getId());
container.push_back(new VIStroke(stroke));
return *this;
};
StrokeArrayInsertIterator& operator*() { return *this; }
StrokeArrayInsertIterator& operator++() { return *this; }
StrokeArrayInsertIterator operator++(int val){ return *this; }
};
*/
//=============================================================================
/*!
TVectorImage::Imp: implementation of TVectorImage class
\relates TVectorImage
*/
//=============================================================================
TVectorImage::Imp::Imp(TVectorImage *vi)
: m_areValidRegions(false)
, m_notIntersectingStrokes(false)
, m_computeRegions(true)
, m_autocloseTolerance(c_newAutocloseTolerance)
, m_maxGroupId(1)
, m_maxGhostGroupId(1)
, m_mutex(new TThread::Mutex())
, m_vi(vi)
, m_intersectionData(0)
, m_computedAlmostOnce(false)
, m_justLoaded(false)
, m_insideGroup(TGroupId())
, m_minimizeEdges(true)
#ifdef NEW_REGION_FILL
, m_regionFinder(0)
#endif
{
#ifdef NEW_REGION_FILL
resetRegionFinder();
#endif
initRegionsData();
}
TVectorImage::Imp::~Imp() {
// delete m_regionFinder;
deleteRegionsData();
delete m_mutex;
}
//=============================================================================
TVectorImage::TVectorImage(bool loaded) : m_imp(new TVectorImage::Imp(this)) {
if (loaded) m_imp->m_justLoaded = true;
}
//-----------------------------------------------------------------------------
TVectorImage::~TVectorImage() {}
//-----------------------------------------------------------------------------
int TVectorImage::isInsideGroup() const {
return m_imp->m_insideGroup.getDepth();
}
//-----------------------------------------------------------------------------
int TVectorImage::addStrokeToGroup(TStroke *stroke, int strokeIndex) {
if (!m_imp->m_strokes[strokeIndex]->m_groupId.isGrouped())
return addStroke(stroke, true);
for (int i = m_imp->m_strokes.size() - 1; i >= 0; i--)
if (m_imp->m_strokes[i]->m_groupId ==
m_imp->m_strokes[strokeIndex]->m_groupId) {
m_imp->insertStrokeAt(
new VIStroke(stroke, m_imp->m_strokes[i]->m_groupId), i + 1);
return i + 1;
}
assert(false);
return -1;
}
//-----------------------------------------------------------------------------
int TVectorImage::addStroke(TStroke *stroke, bool discardPoints) {
if (discardPoints) {
TRectD bBox = stroke->getBBox();
if (bBox.x0 == bBox.x1 && bBox.y0 == bBox.y1) // empty stroke: discard
return -1;
}
if (m_imp->m_insideGroup != TGroupId()) {
int i;
for (i = m_imp->m_strokes.size() - 1; i >= 0; i--)
if (m_imp->m_insideGroup.isParentOf(m_imp->m_strokes[i]->m_groupId)) {
m_imp->insertStrokeAt(
new VIStroke(stroke, m_imp->m_strokes[i]->m_groupId), i + 1);
return i + 1;
}
}
TGroupId gid;
if (m_imp->m_strokes.empty() ||
m_imp->m_strokes.back()->m_groupId.isGrouped() != 0)
gid = TGroupId(this, true);
else
gid = m_imp->m_strokes.back()->m_groupId;
m_imp->m_strokes.push_back(new VIStroke(stroke, gid));
m_imp->m_areValidRegions = false;
return m_imp->m_strokes.size() - 1;
}
//-----------------------------------------------------------------------------
void TVectorImage::moveStrokes(int fromIndex, int count, int moveBefore) {
#ifdef _DEBUG
m_imp->checkGroups();
#endif
m_imp->moveStrokes(fromIndex, count, moveBefore, true);
#ifdef _DEBUG
m_imp->checkGroups();
#endif
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::moveStrokes(int fromIndex, int count, int moveBefore,
bool regroup) {
assert(fromIndex >= 0 && fromIndex < (int)m_strokes.size());
assert(moveBefore >= 0 && moveBefore <= (int)m_strokes.size());
assert(count > 0);
assert(fromIndex != moveBefore);
for (int i = 0; i < count; i++)
if (fromIndex < moveBefore)
moveStroke(fromIndex, moveBefore);
else
moveStroke(fromIndex + i, moveBefore + i);
std::vector<int> changedStrokes;
if (regroup) regroupGhosts(changedStrokes);
if (!changedStrokes.empty())
notifyChangedStrokes(changedStrokes, std::vector<TStroke *>(), false);
}
//-----------------------------------------------------------------------------
void TVectorImage::insertStrokeAt(VIStroke *vs, int strokeIndex,
bool recomputeRegions) {
m_imp->insertStrokeAt(vs, strokeIndex, recomputeRegions);
}
/*
void TVectorImage::insertStrokeAt(TStroke *stroke, int strokeIndex, const
TGroupId& id)
{
VIStroke* vs;
vs = new VIStroke(stroke, id);
m_imp->insertStrokeAt(vs, strokeIndex);
}
*/
//-----------------------------------------------------------------------------
/*
TRectD TVectorImage::addStroke(const std::vector<TThickPoint> &points)
{
// era: TStroke *stroke = makeTStroke(points);
TStroke *stroke = TStroke::interpolate(points, 5.0);
m_imp->m_strokes.push_back(new VIStroke( stroke) );
m_imp->m_areValidRegions = false;
return stroke->getBBox();
}
*/
//-----------------------------------------------------------------------------
static bool isRegionWithStroke(TRegion *region, TStroke *s) {
for (UINT i = 0; i < region->getEdgeCount(); i++)
if (region->getEdge(i)->m_s == s) return true;
return false;
}
//-----------------------------------------------------------------------------
static void deleteSubRegionWithStroke(TRegion *region, TStroke *s) {
for (int i = 0; i < (int)region->getSubregionCount(); i++) {
deleteSubRegionWithStroke(region->getSubregion(i), s);
if (isRegionWithStroke(region->getSubregion(i), s)) {
TRegion *r = region->getSubregion(i);
r->moveSubregionsTo(region);
assert(r->getSubregionCount() == 0);
region->deleteSubregion(i);
delete r;
i--;
}
}
}
//-----------------------------------------------------------------------------
TStroke *TVectorImage::removeStroke(int index, bool doComputeRegions) {
return m_imp->removeStroke(index, doComputeRegions);
}
TStroke *TVectorImage::Imp::removeStroke(int index, bool doComputeRegions) {
assert(index >= 0 && index < (int)m_strokes.size());
QMutexLocker sl(m_mutex);
VIStroke *stroke = m_strokes[index];
eraseIntersection(index);
m_strokes.erase(m_strokes.begin() + index);
if (m_computedAlmostOnce) {
reindexEdges(index);
if (doComputeRegions) computeRegions();
}
return stroke->m_s;
}
//-----------------------------------------------------------------------------
void TVectorImage::removeStrokes(const std::vector<int> &toBeRemoved,
bool deleteThem, bool recomputeRegions) {
m_imp->removeStrokes(toBeRemoved, deleteThem, recomputeRegions);
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::removeStrokes(const std::vector<int> &toBeRemoved,
bool deleteThem, bool recomputeRegions) {
QMutexLocker sl(m_mutex);
for (int i = toBeRemoved.size() - 1; i >= 0; i--) {
assert(i == 0 || toBeRemoved[i - 1] < toBeRemoved[i]);
UINT index = toBeRemoved[i];
eraseIntersection(index);
if (deleteThem) delete m_strokes[index];
m_strokes.erase(m_strokes.begin() + index);
}
if (m_computedAlmostOnce && !toBeRemoved.empty()) {
reindexEdges(toBeRemoved, false);
if (recomputeRegions)
computeRegions();
else
m_areValidRegions = false;
}
}
//-----------------------------------------------------------------------------
void TVectorImage::deleteStroke(int index) {
TStroke *stroke = removeStroke(index);
delete stroke;
}
//-----------------------------------------------------------------------------
void TVectorImage::deleteStroke(VIStroke *stroke) {
UINT index = 0;
for (; index < m_imp->m_strokes.size(); index++)
if (m_imp->m_strokes[index] == stroke) {
deleteStroke(index);
return;
}
}
//-----------------------------------------------------------------------------
/*
void TVectorImage::validateRegionEdges(TStroke* stroke, bool invalidate)
{
if (invalidate)
for (UINT i=0; i<getRegionCount(); i++)
{
TRegion *r = getRegion(i);
// if ((*cit)->getBBox().contains(stroke->getBBox()))
for (UINT j=0; j<r->getEdgeCount(); j++)
{
TEdge* edge = r->getEdge(j);
if (edge->m_s == stroke)
edge->m_w0 = edge->m_w1 = -1;
}
}
else
for (UINT i=0; i<getRegionCount(); i++)
{
TRegion *r = getRegion(i);
// if ((*cit)->getBBox().contains(stroke->getBBox()))
for (UINT j=0; j<r->getEdgeCount(); j++)
{
TEdge* edge = r->getEdge(j);
if (edge->m_w0==-1)
{
int index;
double t, dummy;
edge->m_s->getNearestChunk(edge->m_p0, t, index, dummy);
edge->m_w0 = getWfromChunkAndT(edge->m_s, index, t);
edge->m_s->getNearestChunk(edge->m_p1, t, index, dummy);
edge->m_w1 = getWfromChunkAndT(edge->m_s, index, t);
}
}
}
}
*/
//-----------------------------------------------------------------------------
UINT TVectorImage::getStrokeCount() const { return m_imp->m_strokes.size(); }
//-----------------------------------------------------------------------------
/*
void TVectorImage::addSeed(const TPointD& p, const TPixel& color)
{
m_imp->m_seeds.push_back(TFillSeed(color, p, NULL));
}
*/
//-----------------------------------------------------------------------------
UINT TVectorImage::getRegionCount() const {
// assert( m_imp->m_areValidRegions || m_imp->m_regions.empty());
return m_imp->m_regions.size();
}
//-----------------------------------------------------------------------------
TRegion *TVectorImage::getRegion(UINT index) const {
assert(index < m_imp->m_regions.size());
// assert( m_imp->m_areValidRegions );
return m_imp->m_regions[index];
}
//-----------------------------------------------------------------------------
TRegion *TVectorImage::getRegion(TRegionId regId) const {
int index = getStrokeIndexById(regId.m_strokeId);
assert(m_imp->m_areValidRegions);
TRegion *reg = m_imp->getRegion(regId, index);
// assert( reg );
return reg;
}
//-----------------------------------------------------------------------------
TRegion *TVectorImage::Imp::getRegion(TRegionId regId, int index) const {
assert(index != -1);
if (index == -1) return 0;
assert(index < (int)m_strokes.size());
if (index >= (int)m_strokes.size()) return 0;
std::list<TEdge *> &edgeList = m_strokes[index]->m_edgeList;
std::list<TEdge *>::iterator endList = edgeList.end();
double w0;
double w1;
for (std::list<TEdge *>::iterator it = edgeList.begin(); it != endList;
++it) {
w0 = (*it)->m_w0;
w1 = (*it)->m_w1;
if (w0 < w1) {
if (w0 < regId.m_midW && regId.m_midW < w1 && regId.m_direction)
return (*it)->m_r;
} else {
if (w1 < regId.m_midW && regId.m_midW < w0 && !regId.m_direction)
return (*it)->m_r;
}
}
#ifdef _DEBUG
TPointD cp1 = m_strokes[index]->m_s->getControlPoint(0);
TPointD cp2 = m_strokes[index]->m_s->getControlPoint(
m_strokes[index]->m_s->getControlPointCount() - 1);
#endif
return 0;
}
/*
TRegion* TVectorImage::getRegion(TRegionId regId) const
{
int index = getStrokeIndexById(regId.m_strokeId);
assert(index!=-1);
if( index == -1 )
return 0;
assert( index < (int)m_imp->m_strokes.size() );
if( index >= (int)m_imp->m_strokes.size() )
return 0;
std::list<TEdge*> &edgeList = m_imp->m_strokes[index]->m_edgeList;
std::list<TEdge*>::iterator endList = edgeList.end();
double w0;
double w1;
for(list<TEdge*>::iterator it= edgeList.begin(); it!=endList; ++it)
{
w0 = (*it)->m_w0;
w1 = (*it)->m_w1;
if(w0<w1)
{
if( w0 < regId.m_midW && regId.m_midW < w1 && regId.m_direction )
return (*it)->m_r;
}
else
{
if( w1 < regId.m_midW && regId.m_midW < w0 && !regId.m_direction )
return (*it)->m_r;
}
}
return 0;
}
*/
//-----------------------------------------------------------------------------
void TVectorImage::setEdgeColors(int strokeIndex, int leftColorIndex,
int rightColorIndex) {
std::list<TEdge *> &ll = m_imp->m_strokes[strokeIndex]->m_edgeList;
std::list<TEdge *>::const_iterator l = ll.begin();
std::list<TEdge *>::const_iterator l_e = ll.end();
for (; l != l_e; ++l) {
// double w0 = (*l)->m_w0, w1 = (*l)->m_w1;
if ((*l)->m_w0 > (*l)->m_w1) {
if (leftColorIndex != -1)
(*l)->m_styleId = leftColorIndex;
else if (rightColorIndex != -1)
(*l)->m_styleId = rightColorIndex;
} else {
if (rightColorIndex != -1)
(*l)->m_styleId = rightColorIndex;
else if (leftColorIndex != -1)
(*l)->m_styleId = leftColorIndex;
}
}
}
//-----------------------------------------------------------------------------
TStroke *TVectorImage::getStroke(UINT index) const {
assert(index < m_imp->m_strokes.size());
return m_imp->m_strokes[index]->m_s;
}
VIStroke *TVectorImage::getVIStroke(UINT index) const {
assert(index < m_imp->m_strokes.size());
return m_imp->m_strokes[index];
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::getStrokeById(int id) const {
int n = m_imp->m_strokes.size();
for (int i = 0; i < n; i++)
if (m_imp->m_strokes[i]->m_s->getId() == id) return m_imp->m_strokes[i];
return 0;
}
//-----------------------------------------------------------------------------
int TVectorImage::getStrokeIndexById(int id) const {
int n = m_imp->m_strokes.size();
for (int i = 0; i < n; i++)
if (m_imp->m_strokes[i]->m_s->getId() == id) return i;
return -1;
}
//-----------------------------------------------------------------------------
int TVectorImage::getStrokeIndex(TStroke *stroke) const {
int n = m_imp->m_strokes.size();
for (int i = 0; i < n; i++)
if (m_imp->m_strokes[i]->m_s == stroke) return i;
return -1;
}
//-----------------------------------------------------------------------------
TRectD TVectorImage::getBBox() const {
UINT strokeCount = m_imp->m_strokes.size();
if (strokeCount == 0) return TRectD();
TPalette *plt = getPalette();
TRectD bbox;
for (UINT i = 0; i < strokeCount; ++i) {
TRectD r = m_imp->m_strokes[i]->m_s->getBBox();
TColorStyle *style = 0;
if (plt) style = plt->getStyle(m_imp->m_strokes[i]->m_s->getStyle());
if (dynamic_cast<TRasterImagePatternStrokeStyle *>(style) ||
dynamic_cast<TVectorImagePatternStrokeStyle *>(
style)) // con i pattern style, il render a volte taglia sulla bbox
// dello stroke....
// aumento la bbox della meta' delle sue dimensioni:pezzaccia.
r = r.enlarge(std::max(r.getLx() * 0.25, r.getLy() * 0.25));
bbox = ((i == 0) ? r : bbox + r);
}
return bbox;
}
//-----------------------------------------------------------------------------
bool TVectorImage::getNearestStroke(const TPointD &p, double &outW,
UINT &strokeIndex, double &dist2,
bool onlyInCurrentGroup) const {
dist2 = (std::numeric_limits<double>::max)();
strokeIndex = getStrokeCount();
outW = -1;
double tempdis2, tempPar;
for (int i = 0; i < (int)m_imp->m_strokes.size(); ++i) {
if (onlyInCurrentGroup && !inCurrentGroup(i)) continue;
TStroke *s = m_imp->m_strokes[i]->m_s;
tempPar = s->getW(p);
tempdis2 = tdistance2(TThickPoint(p, 0), s->getThickPoint(tempPar));
if (tempdis2 < dist2) {
outW = tempPar;
dist2 = tempdis2;
strokeIndex = i;
}
}
return dist2 < (std::numeric_limits<double>::max)();
}
//-----------------------------------------------------------------------------
#if defined(LINUX) || defined(MACOSX)
void TVectorImage::render(const TVectorRenderData &rd, TRaster32P &ras) {
// hardRenderVectorImage(rd,ras,this);
}
#endif
//-----------------------------------------------------------------------------
//#include "timage_io.h"
TRaster32P TVectorImage::render(bool onlyStrokes) {
TRect bBox = convert(getBBox());
if (bBox.isEmpty()) return (TRaster32P)0;
std::unique_ptr<TOfflineGL> offlineGlContext(new TOfflineGL(bBox.getSize()));
offlineGlContext->clear(TPixel32(0, 0, 0, 0));
offlineGlContext->makeCurrent();
TVectorRenderData rd(TTranslation(-convert(bBox.getP00())),
TRect(bBox.getSize()), getPalette(), 0, true, true);
rd.m_drawRegions = !onlyStrokes;
offlineGlContext->draw(this, rd, false);
return offlineGlContext->getRaster()->clone();
// hardRenderVectorImage(rd,ras,this);
}
//-----------------------------------------------------------------------------
TRegion *TVectorImage::getRegion(const TPointD &p) {
#ifndef NEW_REGION_FILL
if (!isComputedRegionAlmostOnce()) return 0;
if (!m_imp->m_areValidRegions) m_imp->computeRegions();
#endif
return m_imp->getRegion(p);
}
//-----------------------------------------------------------------------------
TRegion *TVectorImage::Imp::getRegion(const TPointD &p) {
int strokeIndex = (int)m_strokes.size() - 1;
while (strokeIndex >= 0) {
for (UINT regionIndex = 0; regionIndex < m_regions.size(); regionIndex++)
if (areDifferentGroup(strokeIndex, false, regionIndex, true) == -1 &&
m_regions[regionIndex]->contains(p))
return m_regions[regionIndex]->getRegion(p);
int curr = strokeIndex;
while (strokeIndex >= 0 &&
areDifferentGroup(curr, false, strokeIndex, false) == -1)
strokeIndex--;
}
return 0;
}
//-----------------------------------------------------------------------------
int TVectorImage::fillStrokes(const TPointD &p, int styleId) {
UINT index;
double outW, dist2;
if (getNearestStroke(p, outW, index, dist2, true)) {
double thick = getStroke(index)->getThickPoint(outW).thick * 1.25;
if (thick < 0.5) thick = 0.5;
if (dist2 > thick * thick) return -1;
assert(index >= 0 && index < m_imp->m_strokes.size());
int ret = m_imp->m_strokes[index]->m_s->getStyle();
m_imp->m_strokes[index]->m_s->setStyle(styleId);
return ret;
}
return -1;
}
//-----------------------------------------------------------------------------
#ifdef NEW_REGION_FILL
void TVectorImage::resetRegionFinder() { m_imp->resetRegionFinder(); }
#else
//------------------------------------------------------------------
int TVectorImage::fill(const TPointD &p, int newStyleId, bool onlyEmpty) {
TRegion *r = getRegion(p);
if (onlyEmpty && r && r->getStyle() != 0) return -1;
if (!m_imp->m_areValidRegions) m_imp->computeRegions();
return m_imp->fill(p, newStyleId);
}
#endif
//-----------------------------------------------------------------------------
/*
void TVectorImage::autoFill(int styleId)
{
m_imp->autoFill(styleId, true);
}
void TVectorImage::Imp::autoFill(int styleId, bool oddLevel)
{
if (!m_areValidRegions)
computeRegions();
for (UINT i = 0; i<m_regions.size(); i++)
{
if (oddLevel)
m_regions[i]->setStyle(styleId);
m_regions[i]->autoFill(styleId, !oddLevel);
}
}
*/
//-----------------------------------------------------------------------------
/*
void TRegion::autoFill(int styleId, bool oddLevel)
{
for (UINT i = 0; i<getSubregionCount(); i++)
{
TRegion* r = getSubregion(i);
if (oddLevel)
r->setStyle(styleId);
r->autoFill(styleId, !oddLevel);
}
}
*/
//-----------------------------------------------------------------------------
int TVectorImage::Imp::fill(const TPointD &p, int styleId) {
int strokeIndex = (int)m_strokes.size() - 1;
while (strokeIndex >= 0) {
if (!inCurrentGroup(strokeIndex)) {
strokeIndex--;
continue;
}
for (UINT regionIndex = 0; regionIndex < m_regions.size(); regionIndex++)
if (areDifferentGroup(strokeIndex, false, regionIndex, true) == -1 &&
m_regions[regionIndex]->contains(p))
return m_regions[regionIndex]->fill(p, styleId);
int curr = strokeIndex;
while (strokeIndex >= 0 &&
areDifferentGroup(curr, false, strokeIndex, false) == -1)
strokeIndex--;
}
return -1;
}
//-----------------------------------------------------------------------------
bool TVectorImage::selectFill(const TRectD &selArea, TStroke *s, int newStyleId,
bool onlyUnfilled, bool fillAreas,
bool fillLines) {
if (!m_imp->m_areValidRegions) m_imp->computeRegions();
return m_imp->selectFill(selArea, s, newStyleId, onlyUnfilled, fillAreas,
fillLines);
}
//-----------------------------------------------------------------------------
bool TVectorImage::Imp::selectFill(const TRectD &selArea, TStroke *s,
int newStyleId, bool onlyUnfilled,
bool fillAreas, bool fillLines) {
bool hitSome = false;
if (s) {
TVectorImage aux;
aux.addStroke(s);
aux.findRegions();
for (UINT j = 0; j < aux.getRegionCount(); j++) {
TRegion *r0 = aux.getRegion(j);
if (fillAreas)
for (UINT i = 0; i < m_regions.size(); i++) {
TRegion *r1 = m_regions[i];
if (m_insideGroup != TGroupId() &&
!m_insideGroup.isParentOf(
m_strokes[r1->getEdge(0)->m_index]->m_groupId))
continue;
if ((!onlyUnfilled || r1->getStyle() == 0) && r0->contains(*r1)) {
r1->setStyle(newStyleId);
hitSome = true;
}
}
if (fillLines)
for (UINT i = 0; i < m_strokes.size(); i++) {
if (!inCurrentGroup(i)) continue;
TStroke *s1 = m_strokes[i]->m_s;
if ((!onlyUnfilled || s1->getStyle() == 0) && r0->contains(*s1)) {
s1->setStyle(newStyleId);
hitSome = true;
}
}
}
aux.removeStroke(0);
return hitSome;
}
// rect fill
if (fillAreas)
#ifndef NEW_REGION_FILL
for (UINT i = 0; i < m_regions.size(); i++) {
int index, j = 0;
do
index = m_regions[i]->getEdge(j++)->m_index;
while (index < 0 && j < (int)m_regions[i]->getEdgeCount());
// if index<0, means that the region is purely of autoclose strokes!
if (m_insideGroup != TGroupId() && index >= 0 &&
!m_insideGroup.isParentOf(m_strokes[index]->m_groupId))
continue;
if (!onlyUnfilled || m_regions[i]->getStyle() == 0)
hitSome |= m_regions[i]->selectFill(selArea, newStyleId);
}
#else
findRegions(selArea);
for (UINT i = 0; i < m_regions.size(); i++) {
if (m_insideGroup != TGroupId() &&
!m_insideGroup.isParentOf(
m_strokes[m_regions[i]->getEdge(0)->m_index]->m_groupId))
continue;
if (!onlyUnfilled || m_regions[i]->getStyle() == 0)
hitSome |= m_regions[i]->selectFill(selArea, newStyleId);
}
#endif
if (fillLines)
for (UINT i = 0; i < m_strokes.size(); i++) {
if (!inCurrentGroup(i)) continue;
TStroke *s = m_strokes[i]->m_s;
if ((!onlyUnfilled || s->getStyle() == 0) &&
selArea.contains(s->getBBox())) {
s->setStyle(newStyleId);
hitSome = true;
}
}
return hitSome;
}
//-----------------------------------------------------------------------------
/*
void TVectorImageImp::seedFill()
{
std::vector<TFillSeed>::iterator it;
TRegion*r;
TFillStyleP app =NULL;
for (it=m_seeds.begin(); it!=m_seeds.end(); )
if ((r=fill(it->m_p, new TColorStyle(it->m_fillStyle.getPointer()) ))!=NULL)
{
it->m_r = r;
it = m_seeds.erase(it); // i seed provengono da immagini vecchie. non
servono piu'.
}
m_areValidRegions=true;
}
*/
//-----------------------------------------------------------------------------
/*
void TVectorImage::seedFill()
{
m_imp->seedFill();
}
*/
//-----------------------------------------------------------------------------
void TVectorImage::notifyChangedStrokes(
const std::vector<int> &strokeIndexArray,
const std::vector<TStroke *> &oldStrokeArray, bool areFlipped) {
std::vector<TStroke *> aux;
/*
if (oldStrokeArray.empty())
{
for (int i=0; i<(int)strokeIndexArray.size(); i++)
{
TStroke *s = getStroke(strokeIndexArray[i]);
aux.push_back(s);
}
m_imp->notifyChangedStrokes(strokeIndexArray, aux, areFlipped);
}
else*/
m_imp->notifyChangedStrokes(strokeIndexArray, oldStrokeArray, areFlipped);
}
//-----------------------------------------------------------------------------
void TVectorImage::notifyChangedStrokes(int strokeIndexArray,
TStroke *oldStroke, bool isFlipped) {
std::vector<int> app(1);
app[0] = strokeIndexArray;
std::vector<TStroke *> oldStrokeArray(1);
oldStrokeArray[0] = oldStroke ? oldStroke : getStroke(strokeIndexArray);
m_imp->notifyChangedStrokes(app, oldStrokeArray, isFlipped);
}
//-----------------------------------------------------------------------------
// ofstream of("C:\\temp\\butta.txt");
void transferColors(const std::list<TEdge *> &oldList,
const std::list<TEdge *> &newList, bool isStrokeChanged,
bool isFlipped, bool overwriteColor) {
if (newList.empty() || oldList.empty()) return;
std::list<TEdge *>::const_iterator it;
// unused variable
#if 0
list<TEdge*>::const_iterator it1;
#endif
double totLength;
if (isStrokeChanged) totLength = newList.front()->m_s->getLength();
for (it = newList.begin(); it != newList.end(); ++it) {
int newStyle = -1; // ErrorStyle;
// unused variable
#if 0
int styleId = (*it)->m_styleId;
#endif
if (!overwriteColor && (*it)->m_styleId != 0) continue;
bool reversed;
double deltaMax = 0.005;
double l0, l1;
if ((*it)->m_w0 > (*it)->m_w1) {
reversed = !isFlipped;
if (isStrokeChanged) {
l0 = (*it)->m_s->getLength((*it)->m_w1) / totLength;
l1 = (*it)->m_s->getLength((*it)->m_w0) / totLength;
} else {
l0 = (*it)->m_w1;
l1 = (*it)->m_w0;
}
} else {
reversed = isFlipped;
if (isStrokeChanged) {
l0 = (*it)->m_s->getLength((*it)->m_w0) / totLength;
l1 = (*it)->m_s->getLength((*it)->m_w1) / totLength;
} else {
l0 = (*it)->m_w0;
l1 = (*it)->m_w1;
}
// w0 = (*it)->m_w0;
// w1 = (*it)->m_w1;
}
std::list<TEdge *>::const_iterator it1 = oldList.begin();
for (; it1 != oldList.end(); ++it1) {
// unused variable
#if 0
TEdge*e = *it1;
#endif
if (/*(*it1)->m_styleId==0 ||*/
(reversed && (*it1)->m_w0 < (*it1)->m_w1) ||
(!reversed && (*it1)->m_w0 > (*it1)->m_w1))
continue;
double _l0, _l1;
if (isStrokeChanged) {
double totLength1 = (*it1)->m_s->getLength();
_l0 = (*it1)->m_s->getLength(std::min((*it1)->m_w0, (*it1)->m_w1)) /
totLength1;
_l1 = (*it1)->m_s->getLength(std::max((*it1)->m_w0, (*it1)->m_w1)) /
totLength1;
} else {
_l0 = std::min((*it1)->m_w0, (*it1)->m_w1);
_l1 = std::max((*it1)->m_w0, (*it1)->m_w1);
}
double delta = std::min(l1, _l1) - std::max(l0, _l0);
if (delta > deltaMax) {
deltaMax = delta;
newStyle = (*it1)->m_styleId;
}
}
if (newStyle >= 0) // !=ErrorStyle)
{
if ((*it)->m_r)
(*it)->m_r->setStyle(newStyle);
else
(*it)->m_styleId = newStyle;
}
}
}
//-----------------------------------------------------------------------------
void TVectorImage::transferStrokeColors(TVectorImageP sourceImage,
int sourceStroke,
TVectorImageP destinationImage,
int destinationStroke) {
std::list<TEdge *> *sourceList =
&(sourceImage->m_imp->m_strokes[sourceStroke]->m_edgeList);
std::list<TEdge *> *destinationList =
&(destinationImage->m_imp->m_strokes[destinationStroke]->m_edgeList);
transferColors(*sourceList, *destinationList, true, false, false);
}
//-----------------------------------------------------------------------------
bool TVectorImage::Imp::areWholeGroups(const std::vector<int> &indexes) const {
UINT i, j;
for (i = 0; i < indexes.size(); i++) {
if (m_strokes[indexes[i]]->m_isNewForFill) return false;
if (!m_strokes[indexes[i]]->m_groupId.isGrouped()) return false;
for (j = 0; j < m_strokes.size(); j++) {
int ret = areDifferentGroup(indexes[i], false, j, false);
if (ret == -1 ||
(ret >= 1 && find(indexes.begin(), indexes.end(), j) == indexes.end()))
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
//-------------------------------------------------------------------
void TVectorImage::Imp::notifyChangedStrokes(
const std::vector<int> &strokeIndexArray,
const std::vector<TStroke *> &oldStrokeArray, bool areFlipped) {
#ifdef _DEBUG
checkIntersections();
#endif
assert(oldStrokeArray.empty() ||
strokeIndexArray.size() == oldStrokeArray.size());
if (!m_computedAlmostOnce && !m_notIntersectingStrokes) return;
typedef std::list<TEdge *> EdgeList;
std::vector<EdgeList> oldEdgeListArray(strokeIndexArray.size());
int i;
// se si sono trasformati interi gruppi (senza deformare le stroke) non c'e'
// bisogno di ricalcolare le regioni!
if (oldStrokeArray.empty() && areWholeGroups(strokeIndexArray)) {
m_areValidRegions = true;
for (i = 0; i < (int)m_regions.size(); i++)
invalidateRegionPropAndBBox(m_regions[i]);
return;
}
QMutexLocker sl(m_mutex);
for (i = 0; i < (int)strokeIndexArray.size(); i++) // ATTENZIONE! non si puo'
// fare eraseIntersection
// in questo stesso ciclo
{
VIStroke *s = m_strokes[strokeIndexArray[i]];
// if (s->m_s->isSelfLoop())
// assert(s->m_edgeList.size()<=1);
std::list<TEdge *>::iterator it = s->m_edgeList.begin();
for (; it != s->m_edgeList.end(); it++) {
TEdge *e = new TEdge(**it, false);
if (!oldStrokeArray.empty()) e->m_s = oldStrokeArray[i];
oldEdgeListArray[i].push_back(e); // bisogna allocare nuovo edge,
// perche'la eraseIntersection poi lo
// cancella....
if ((*it)->m_toBeDeleted) delete *it;
}
s->m_edgeList.clear();
}
for (i = 0; i < (int)strokeIndexArray.size(); i++) {
eraseIntersection(strokeIndexArray[i]);
if (!m_notIntersectingStrokes)
m_strokes[strokeIndexArray[i]]->m_isNewForFill = true;
}
computeRegions(); // m_imp->m_strokes, m_imp->m_regions);
for (i = 0; i < (int)strokeIndexArray.size(); i++) {
transferColors(oldEdgeListArray[i],
m_strokes[strokeIndexArray[i]]->m_edgeList, true, areFlipped,
false);
clearPointerContainer(oldEdgeListArray[i]);
}
#ifdef _DEBUG
checkIntersections();
#endif
}
//-----------------------------------------------------------------------------
void TVectorImage::findRegions() {
// for (int i=0; i<(int)m_imp->m_strokes.size(); i++)
// {
// m_imp->eraseIntersection(i);
// m_imp->m_strokes[i]->m_isNewForFill=true;
// }
if (m_imp->m_areValidRegions) return;
// m_imp->m_regions.clear();
// compute regions...
m_imp->computeRegions(); // m_imp->m_strokes, m_imp->m_regions);
}
//-----------------------------------------------------------------------------
void TVectorImage::putRegion(TRegion *region) {
m_imp->m_regions.push_back(region);
}
//-----------------------------------------------------------------------------
//-------------------------------------------------------------------
void TVectorImage::Imp::cloneRegions(TVectorImage::Imp &out,
bool doComputeRegions) {
std::unique_ptr<IntersectionBranch[]> v;
UINT size = getFillData(v);
out.setFillData(v, size, doComputeRegions);
}
//-----------------------------------------------------------------------------
TVectorImageP TVectorImage::clone() const {
return TVectorImageP(cloneImage());
}
//-----------------------------------------------------------------------------
TImage *TVectorImage::cloneImage() const {
TVectorImage *out = new TVectorImage;
out->m_imp->m_autocloseTolerance = m_imp->m_autocloseTolerance;
out->m_imp->m_maxGroupId = m_imp->m_maxGroupId;
out->m_imp->m_maxGhostGroupId = m_imp->m_maxGhostGroupId;
for (int i = 0; i < (int)m_imp->m_strokes.size(); i++) {
out->m_imp->m_strokes.push_back(new VIStroke(*(m_imp->m_strokes[i])));
out->m_imp->m_strokes.back()->m_s->setId(m_imp->m_strokes[i]->m_s->getId());
}
m_imp->cloneRegions(*out->m_imp);
out->setPalette(getPalette());
out->m_imp->m_computedAlmostOnce = m_imp->m_computedAlmostOnce;
out->m_imp->m_justLoaded = m_imp->m_justLoaded;
return out;
}
//-----------------------------------------------------------------------------
/*
TVectorImageP mergeAndClear(TVectorImageP v1, TVectorImageP v2 )
{
TVectorImageP out = new TVectorImage;
std::vector<VIStroke*>::iterator it_b = v1->m_imp->m_strokes.begin();
std::vector<VIStroke*>::iterator it_e = v1->m_imp->m_strokes.end();
std::copy( it_b, it_e, std::back_inserter( out->m_imp->m_strokes ) );
it_b = v2->m_imp->m_strokes.begin();
it_e = v2->m_imp->m_strokes.end();
std::copy( it_b, it_e, std::back_inserter( out->m_imp->m_strokes ) );
v1->m_imp->m_regions.clear();
v1->m_imp->m_strokes.clear();
v2->m_imp->m_regions.clear();
v2->m_imp->m_strokes.clear();
out->m_imp->m_areValidRegions = false;
return out;
}
*/
//-----------------------------------------------------------------------------
VIStroke::VIStroke(const VIStroke &s, bool sameId)
: m_isPoint(s.m_isPoint)
, m_isNewForFill(s.m_isNewForFill)
, m_groupId(s.m_groupId) {
m_s = new TStroke(*s.m_s);
std::list<TEdge *>::const_iterator it = s.m_edgeList.begin(),
it_e = s.m_edgeList.end();
for (; it != it_e; ++it) {
m_edgeList.push_back(new TEdge(**it, true));
m_edgeList.back()->m_s = m_s;
}
if (sameId) m_s->setId(s.m_s->getId());
}
//-----------------------------------------------------------------------------
void TVectorImage::mergeImage(const TVectorImageP &img, const TAffine &affine,
bool sameStrokeId) {
QMutexLocker sl(m_imp->m_mutex);
#ifdef _DEBUG
checkIntersections();
#endif
TPalette *tarPlt = getPalette();
TPalette *srcPlt = img->getPalette();
assert(tarPlt);
assert(tarPlt->getPageCount() > 0);
// merge della palette
std::map<int, int> styleTable;
std::set<int> usedStyles;
img->getUsedStyles(usedStyles);
// gmt, 16/10/07. Quando si copia e incolla un path su uno stroke succede
// che la palette dell'immagine sorgente sia vuota. Non mi sembra sbagliato
// mettere comunque un test qui
if (srcPlt) mergePalette(tarPlt, styleTable, srcPlt, usedStyles);
mergeImage(img, affine, styleTable, sameStrokeId);
}
//-----------------------------------------------------------------------------
void TVectorImage::mergeImage(const TVectorImageP &img, const TAffine &affine,
const std::map<int, int> &styleTable,
bool sameStrokeId) {
int imageSize = img->getStrokeCount();
if (imageSize == 0) return;
QMutexLocker sl(m_imp->m_mutex);
m_imp->m_computedAlmostOnce |= img->m_imp->m_computedAlmostOnce;
std::vector<int> changedStrokeArray(imageSize);
img->m_imp->reindexGroups(*m_imp);
int i;
int insertAt = 0;
if (m_imp->m_insideGroup !=
TGroupId()) // if is inside a group, new image is put in that group.
{
TGroupId groupId;
for (i = m_imp->m_strokes.size() - 1; i >= 0; i--) {
if (m_imp->m_insideGroup.isParentOf(m_imp->m_strokes[i]->m_groupId)) {
insertAt = i + 1;
groupId = m_imp->m_strokes[i]->m_groupId;
break;
}
}
if (insertAt != 0) {
for (i = 0; i < (int)img->m_imp->m_strokes.size(); i++) {
if (!img->m_imp->m_strokes[i]->m_groupId.isGrouped()) {
img->m_imp->m_strokes[i]->m_groupId = groupId;
} else {
img->m_imp->m_strokes[i]->m_groupId =
TGroupId(groupId, img->m_imp->m_strokes[i]->m_groupId);
}
}
}
}
// si fondono l'ultimo gruppo ghost della vecchia a e il primo della nuova
else if (!m_imp->m_strokes.empty() &&
m_imp->m_strokes.back()->m_groupId.isGrouped(true) != 0 &&
img->m_imp->m_strokes[0]->m_groupId.isGrouped(true) != 0) {
TGroupId idNew = m_imp->m_strokes.back()->m_groupId,
idOld = img->m_imp->m_strokes[0]->m_groupId;
for (i = 0; i < (int)img->m_imp->m_strokes.size() &&
img->m_imp->m_strokes[i]->m_groupId == idOld;
i++)
img->m_imp->m_strokes[i]->m_groupId = idNew;
}
// merge dell'immagine
std::map<int, int>::const_iterator styleTableIt;
int oldSize = getStrokeCount();
for (i = 0; i < imageSize; i++) {
VIStroke *srcStroke = img->m_imp->m_strokes[i];
VIStroke *tarStroke = new VIStroke(*srcStroke, sameStrokeId);
int styleId;
// cambio i colori delle regioni
std::list<TEdge *>::const_iterator it = tarStroke->m_edgeList.begin(),
it_e = tarStroke->m_edgeList.end();
for (; it != it_e; ++it) {
int styleId = (*it)->m_styleId;
styleTableIt = styleTable.find(styleId);
assert(styleTableIt != styleTable.end());
if (styleTableIt != styleTable.end())
(*it)->m_styleId = styleTableIt->second;
}
tarStroke->m_s->transform(affine, true);
int strokeId = srcStroke->m_s->getId();
if (getStrokeById(strokeId) == 0) tarStroke->m_s->setId(strokeId);
// cambio i colori dello stroke
styleId = srcStroke->m_s->getStyle();
styleTableIt = styleTable.find(styleId);
assert(styleTableIt != styleTable.end());
if (styleTableIt != styleTable.end())
tarStroke->m_s->setStyle(styleTableIt->second);
if (insertAt == 0) {
m_imp->m_strokes.push_back(tarStroke);
changedStrokeArray[i] = oldSize + i;
} else {
std::vector<VIStroke *>::iterator it = m_imp->m_strokes.begin();
advance(it, insertAt + i);
m_imp->m_strokes.insert(it, tarStroke);
changedStrokeArray[i] = insertAt + i;
}
}
if (insertAt > 0) {
// for (i=changedStrokeArray.back()+1; i<m_imp->m_strokes.size(); i++)
// changedStrokeArray.push_back(i);
m_imp->reindexEdges(changedStrokeArray, true);
}
notifyChangedStrokes(changedStrokeArray, std::vector<TStroke *>(), false);
#ifdef _DEBUG
checkIntersections();
#endif
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::reindexGroups(TVectorImage::Imp &img) {
UINT i, j;
int newMax = img.m_maxGroupId;
int newMaxGhost = img.m_maxGhostGroupId;
for (i = 0; i < m_strokes.size(); i++) {
VIStroke *s = m_strokes[i];
if (s->m_groupId.m_id.empty()) continue;
if (s->m_groupId.m_id[0] > 0)
for (j = 0; j < s->m_groupId.m_id.size(); j++) {
s->m_groupId.m_id[j] += img.m_maxGroupId;
newMax = std::max(newMax, s->m_groupId.m_id[j]);
}
else
for (j = 0; j < s->m_groupId.m_id.size(); j++) {
s->m_groupId.m_id[j] -= img.m_maxGhostGroupId;
newMaxGhost = std::max(newMaxGhost, -s->m_groupId.m_id[j]);
}
}
m_maxGroupId = img.m_maxGroupId = newMax;
m_maxGhostGroupId = img.m_maxGhostGroupId = newMaxGhost;
}
//-----------------------------------------------------------------------------
void TVectorImage::mergeImage(const std::vector<const TVectorImage *> &images) {
UINT oldSize = getStrokeCount();
std::vector<int> changedStrokeArray;
const TVectorImage *img;
int index;
if (m_imp->m_insideGroup != TGroupId()) {
for (index = m_imp->m_strokes.size() - 1; index > -1; index--)
if (m_imp->m_insideGroup.isParentOf(m_imp->m_strokes[index]->m_groupId))
break;
assert(index > -1);
} else
index = getStrokeCount() - 1;
for (UINT j = 0; j < images.size(); ++j) {
img = images[j];
if (img->getStrokeCount() == 0) continue;
img->m_imp->reindexGroups(*m_imp);
int i = 0;
/*if (!m_imp->m_strokes.empty() &&
m_imp->m_strokes[index-1]->m_groupId.isGrouped(true)!=0 &&
img->m_imp->m_strokes[0]->m_groupId.isGrouped(true)!=0)
{
assert(false);
TGroupId idNew = m_imp->m_strokes[index]->m_groupId, idOld =
img->m_imp->m_strokes[0]->m_groupId;
for (;i<(int)img->m_imp->m_strokes.size() &&
img->m_imp->m_strokes[i]->m_groupId==idOld; i++)
img->m_imp->m_strokes[i]->m_groupId==idNew;
}*/
int strokeCount = img->getStrokeCount();
m_imp->m_computedAlmostOnce |= img->m_imp->m_computedAlmostOnce;
for (i = 0; i < strokeCount; i++) {
VIStroke *srcStroke = img->m_imp->m_strokes[i];
VIStroke *tarStroke = new VIStroke(*srcStroke);
int strokeId = srcStroke->m_s->getId();
if (getStrokeById(strokeId) == 0) tarStroke->m_s->setId(strokeId);
index++;
if (m_imp->m_insideGroup == TGroupId())
m_imp->m_strokes.push_back(tarStroke);
else // if we are inside a group, the images must become part of that
// group
{
tarStroke->m_groupId =
TGroupId(m_imp->m_insideGroup, tarStroke->m_groupId);
m_imp->insertStrokeAt(tarStroke, index);
}
changedStrokeArray.push_back(index);
}
}
notifyChangedStrokes(changedStrokeArray, std::vector<TStroke *>(), false);
}
//-------------------------------------------------------------------
void TVectorImage::recomputeRegionsIfNeeded() {
if (!m_imp->m_justLoaded) return;
m_imp->m_justLoaded = false;
std::vector<int> v(m_imp->m_strokes.size());
int i;
for (i = 0; i < (int)m_imp->m_strokes.size(); i++) v[i] = i;
m_imp->notifyChangedStrokes(v, std::vector<TStroke *>(), false);
}
//-----------------------------------------------------------------------------
void TVectorImage::eraseStyleIds(const std::vector<int> styleIds) {
int j;
for (j = 0; j < (int)styleIds.size(); j++) {
int styleId = styleIds[j];
int strokeCount = getStrokeCount();
int i;
for (i = strokeCount - 1; i >= 0; i--) {
TStroke *stroke = getStroke(i);
if (stroke && stroke->getStyle() == styleId) removeStroke(i);
}
int regionCount = getRegionCount();
for (i = 0; i < regionCount; i++) {
TRegion *region = getRegion(i);
if (!region || region->getStyle() != styleId) continue;
TPointD p;
if (region->getInternalPoint(p)) fill(p, 0);
}
}
}
//-------------------------------------------------------------------
void TVectorImage::insertImage(const TVectorImageP &img,
const std::vector<int> &dstIndices) {
UINT i;
UINT imageSize = img->getStrokeCount();
assert(dstIndices.size() == imageSize);
// img->m_imp->reindexGroups(*m_imp);
std::vector<int> changedStrokeArray(imageSize);
std::vector<VIStroke *>::iterator it = m_imp->m_strokes.begin();
for (i = 0; i < imageSize; i++) {
assert(i == 0 || dstIndices[i] > dstIndices[i - 1]);
VIStroke *srcStroke = img->m_imp->m_strokes[i];
VIStroke *tarStroke = new VIStroke(*srcStroke);
int strokeId = srcStroke->m_s->getId();
if (getStrokeById(strokeId) == 0) tarStroke->m_s->setId(strokeId);
advance(it, (i == 0) ? dstIndices[i] : dstIndices[i] - dstIndices[i - 1]);
it = m_imp->m_strokes.insert(it, tarStroke);
changedStrokeArray[i] = dstIndices[i];
}
m_imp->reindexEdges(changedStrokeArray, true);
notifyChangedStrokes(changedStrokeArray, std::vector<TStroke *>(), false);
// m_imp->computeRegions();
}
//-----------------------------------------------------------------------------
void TVectorImage::enableRegionComputing(bool enabled,
bool notIntersectingStrokes) {
m_imp->m_computeRegions = enabled;
m_imp->m_notIntersectingStrokes = notIntersectingStrokes;
}
//------------------------------------------------------------------------------
void TVectorImage::enableMinimizeEdges(bool enabled) {
m_imp->m_minimizeEdges = enabled;
}
//-----------------------------------------------------------------------------
TVectorImageP TVectorImage::splitImage(const std::vector<int> &indices,
bool removeFlag) {
TVectorImageP out = new TVectorImage;
out->m_imp->m_maxGroupId = m_imp->m_maxGroupId;
out->m_imp->m_maxGhostGroupId = m_imp->m_maxGhostGroupId;
std::vector<int> toBeRemoved;
TPalette *vp = getPalette();
if (vp) out->setPalette(vp->clone());
for (UINT i = 0; i < indices.size(); ++i) {
VIStroke *ref = m_imp->m_strokes[indices[i]];
assert(ref);
VIStroke *vs = new VIStroke(*ref);
vs->m_isNewForFill = true;
out->m_imp->m_strokes.push_back(vs);
}
if (removeFlag) removeStrokes(indices, true, true);
out->m_imp->m_areValidRegions = false;
out->m_imp->m_computedAlmostOnce = m_imp->m_computedAlmostOnce;
return out;
}
//-----------------------------------------------------------------------------
TVectorImageP TVectorImage::splitSelected(bool removeFlag) {
TVectorImageP out = new TVectorImage;
std::vector<int> toBeRemoved;
for (UINT i = 0; i < getStrokeCount(); ++i) {
VIStroke *ref = m_imp->m_strokes[i];
assert(ref);
if (ref->m_s->getFlag(TStroke::c_selected_flag)) {
VIStroke *stroke = new VIStroke(*ref);
out->m_imp->m_strokes.push_back(stroke);
if (removeFlag) {
toBeRemoved.push_back(i);
// removeStroke(i);
// delete ref;
// i--;
}
}
}
removeStrokes(toBeRemoved, true, true);
out->m_imp->m_areValidRegions = false;
return out;
}
//-----------------------------------------------------------------------------
void TVectorImage::validateRegions(bool state) {
m_imp->m_areValidRegions = state;
}
//-----------------------------------------------------------------------------
/*
void TVectorImage::invalidateBBox()
{
for(UINT i=0; i<getRegionCount(); i++)
getRegion(i)->invalidateBBox();
}
*/
//-----------------------------------------------------------------------------
void TVectorImage::setFillData(std::unique_ptr<IntersectionBranch[]> const &v,
UINT branchCount, bool doComputeRegions) {
m_imp->setFillData(v, branchCount, doComputeRegions);
}
//-----------------------------------------------------------------------------
UINT TVectorImage::getFillData(std::unique_ptr<IntersectionBranch[]> &v) {
return m_imp->getFillData(v);
}
//-----------------------------------------------------------------------------
void TVectorImage::enableStrokeStyle(int index, bool enable) {
DisabledStrokeStyles &disabledSet = getDisabledStrokeStyleSet();
if (enable)
disabledSet.erase(index);
else
disabledSet.insert(index);
}
//-----------------------------------------------------------------------------
bool TVectorImage::isStrokeStyleEnabled(int index) {
return isStrokeStyleEnabled__(index);
}
//-----------------------------------------------------------------------------
void TVectorImage::getUsedStyles(std::set<int> &styles) const {
UINT strokeCount = getStrokeCount();
UINT i = 0;
for (; i < strokeCount; ++i) {
VIStroke *srcStroke = m_imp->m_strokes[i];
int styleId = srcStroke->m_s->getStyle();
if (styleId != 0) styles.insert(styleId);
std::list<TEdge *>::const_iterator it = srcStroke->m_edgeList.begin();
for (; it != srcStroke->m_edgeList.end(); ++it) {
styleId = (*it)->m_styleId;
if (styleId != 0) styles.insert(styleId);
}
}
}
//-----------------------------------------------------------------------------
inline double recomputeW1(double oldW, const TStroke &oldStroke,
const TStroke &newStroke, double startW) {
double oldLength = oldStroke.getLength();
double newLength = newStroke.getLength();
assert(startW <= oldW);
assert(newLength < oldLength);
double s = oldStroke.getLength(startW, oldW);
assert(s <= newLength || areAlmostEqual(s, newLength, 1e-5));
return newStroke.getParameterAtLength(s);
}
//-----------------------------------------------------------------------------
inline double recomputeW2(double oldW, const TStroke &oldStroke,
const TStroke &newStroke, double length) {
double s = oldStroke.getLength(oldW);
return newStroke.getParameterAtLength(length + s);
}
//-----------------------------------------------------------------------------
inline double recomputeW(double oldW, const TStroke &oldStroke,
const TStroke &newStroke, bool isAtBegin) {
double oldLength = oldStroke.getLength();
double newLength = newStroke.getLength();
assert(newLength < oldLength);
double s =
oldStroke.getLength(oldW) - ((isAtBegin) ? 0 : oldLength - newLength);
assert(s <= newLength || areAlmostEqual(s, newLength, 1e-5));
return newStroke.getParameterAtLength(s);
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
void TVectorImage::checkIntersections() { m_imp->checkIntersections(); }
#endif
/*
void TVectorImage::reassignStyles()
{
set<int> styles;
UINT strokeCount = getStrokeCount();
UINT i=0;
for( ; i< strokeCount; ++i)
{
int styleId = getStroke(i)->getStyle();
if(styleId != 0) styles.insert(styleId);
}
UINT regionCount = getRegionCount();
for( i = 0; i< regionCount; ++i)
{
int styleId = getRegion(i)->getStyle();
if(styleId != 0) styles.insert(styleId);
}
map<int, int> conversionTable;
for(set<int>::iterator it = styles.begin(); it != styles.end(); ++it)
{
int styleId = *it;
conversionTable[styleId] = styleId + 13;
}
for( i = 0; i< strokeCount; ++i)
{
TStroke *stroke = getStroke(i);
int styleId = stroke->getStyle();
if(styleId != 0)
{
map<int, int>::iterator it = conversionTable.find(styleId);
if(it != conversionTable.end())
stroke->setStyle(it->second);
}
}
for( i = 0; i< regionCount; ++i)
{
TRegion *region = getRegion(i);
int styleId = region->getStyle();
if(styleId != 0)
{
map<int, int>::iterator it = conversionTable.find(styleId);
if(it != conversionTable.end())
region->setStyle(it->second);
}
}
}
*/
//-----------------------------------------------------------------------------
bool TVectorImage::isComputedRegionAlmostOnce() const {
return m_imp->m_computedAlmostOnce;
}
//-----------------------------------------------------------------------------
void TVectorImage::splitStroke(int strokeIndex,
const std::vector<DoublePair> &sortedWRanges) {
m_imp->splitStroke(strokeIndex, sortedWRanges);
}
void TVectorImage::Imp::splitStroke(
int strokeIndex, const std::vector<DoublePair> &sortedWRanges) {
int i;
VIStroke *subV = 0;
if (strokeIndex >= (int)m_strokes.size() || sortedWRanges.empty()) return;
VIStroke *vs = m_strokes[strokeIndex];
TGroupId groupId = vs->m_groupId;
// se e' un self loop, alla fine non lo sara', e deve stare insieme
// alle stroke non loopate. sposto lo stroke se serve
/*
{
if (vs->m_s->isSelfLoop())
int up = strokeIndex+1;
while (up<(int)m_strokes.size() && m_strokes[up]->m_s->isSelfLoop())
up++;
int dn = strokeIndex-1;
while (dn>=0 && m_strokes[dn]->m_s->isSelfLoop())
dn--;
if ((up == m_strokes.size() || up!=strokeIndex+1) && (dn<0 ||
dn!=strokeIndex-1))
{
if (up>=(int)m_strokes.size())
{
assert(dn>=0);
moveStroke(strokeIndex, dn+1);
strokeIndex = dn+1;
}
else
{
moveStroke(strokeIndex, up-1);
strokeIndex = up-1;
}
}
}
*/
assert(vs == m_strokes[strokeIndex]);
bool toBeJoined =
(vs->m_s->isSelfLoop() && sortedWRanges.front().first == 0.0 &&
sortedWRanges.back().second == 1.0);
int styleId = vs->m_s->getStyle();
TStroke::OutlineOptions oOptions(vs->m_s->outlineOptions());
m_regions.clear();
std::list<TEdge *> origEdgeList; // metto al pizzo la edge std::list della
// stroke, perche' la erase intersection ne
// fara' scempio
std::list<TEdge *>::iterator it = vs->m_edgeList.begin(),
it_e = vs->m_edgeList.end();
for (; it != it_e; ++it) origEdgeList.push_back(new TEdge(**it, false));
removeStroke(strokeIndex, false);
std::vector<std::list<TEdge *>> edgeList(sortedWRanges.size());
strokeIndex--;
int wSize = (int)sortedWRanges.size();
for (i = 0; i < wSize; i++) {
assert(sortedWRanges[i].first < sortedWRanges[i].second);
assert(i == wSize - 1 ||
sortedWRanges[i].second <= sortedWRanges[i + 1].first);
assert(sortedWRanges[i].first >= 0 && sortedWRanges[i].first <= 1);
assert(sortedWRanges[i].second >= 0 && sortedWRanges[i].second <= 1);
subV = new VIStroke(new TStroke(), groupId);
TStroke s, dummy;
if (areAlmostEqual(sortedWRanges[i].first, 0, 1e-4))
s = *vs->m_s;
else
vs->m_s->split(sortedWRanges[i].first, dummy, s);
double lenAtW0 = vs->m_s->getLength(sortedWRanges[i].first);
double lenAtW1 = vs->m_s->getLength(sortedWRanges[i].second);
double newW1 = s.getParameterAtLength(lenAtW1 - lenAtW0);
if (areAlmostEqual(newW1, 1.0, 1e-4))
*(subV->m_s) = s;
else
s.split(newW1, *(subV->m_s), dummy);
strokeIndex++;
/*assert(m_strokes[strokeIndex]->m_edgeList.empty());
assert(m_strokes[strokeIndex-wSize+1]->m_edgeList.empty());*/
std::list<TEdge *>::const_iterator it = origEdgeList.begin(),
it_e = origEdgeList.end();
for (; it != it_e; ++it) {
double wMin = std::min((*it)->m_w0, (*it)->m_w1);
double wMax = std::max((*it)->m_w0, (*it)->m_w1);
if (wMin >= sortedWRanges[i].second || wMax <= sortedWRanges[i].first)
continue;
TEdge *e = new TEdge(**it, false);
if (wMin < sortedWRanges[i].first)
wMin = 0.0;
else
wMin =
recomputeW1(wMin, *(vs->m_s), *(subV->m_s), sortedWRanges[i].first);
if (wMax > sortedWRanges[i].second)
wMax = 1.0;
else
wMax =
recomputeW1(wMax, *(vs->m_s), *(subV->m_s), sortedWRanges[i].first);
if (e->m_w0 < e->m_w1)
e->m_w0 = wMin, e->m_w1 = wMax;
else
e->m_w1 = wMin, e->m_w0 = wMax;
e->m_r = 0;
e->m_s = subV->m_s;
e->m_index = strokeIndex;
edgeList[i].push_back(e);
}
subV->m_edgeList.clear();
insertStrokeAt(subV, strokeIndex);
subV->m_s->setStyle(styleId);
subV->m_s->outlineOptions() = oOptions;
}
clearPointerContainer(origEdgeList);
if (toBeJoined) // la stroke e' un loop, quindi i due choncketti iniziali e
// finali vanno joinati
{
VIStroke *s0 = m_strokes[strokeIndex];
VIStroke *s1 = m_strokes[strokeIndex - wSize + 1];
std::list<TEdge *> &l0 = edgeList.back();
std::list<TEdge *> &l1 = edgeList.front();
// assert(s0->m_edgeList.empty());
// assert(s1->m_edgeList.empty());
removeStroke(strokeIndex - wSize + 1, false);
strokeIndex--;
removeStroke(strokeIndex, false);
VIStroke *s = new VIStroke(joinStrokes(s0->m_s, s1->m_s), groupId);
insertStrokeAt(s, strokeIndex);
std::list<TEdge *>::iterator it = l0.begin(), it_e = l0.end();
for (; it != it_e; ++it) {
(*it)->m_s = s->m_s;
(*it)->m_index = strokeIndex;
(*it)->m_w0 = recomputeW2((*it)->m_w0, *(s0->m_s), *(s->m_s), 0);
(*it)->m_w1 = recomputeW2((*it)->m_w1, *(s0->m_s), *(s->m_s), 0);
}
it = l1.begin();
double length = s0->m_s->getLength();
while (it != l1.end()) {
(*it)->m_s = s->m_s;
(*it)->m_index = strokeIndex;
(*it)->m_w0 = recomputeW2((*it)->m_w0, *(s1->m_s), *(s->m_s), length);
(*it)->m_w1 = recomputeW2((*it)->m_w1, *(s1->m_s), *(s->m_s), length);
l0.push_back(*it);
it = l1.erase(it);
}
assert(l1.empty());
edgeList.erase(edgeList.begin());
std::vector<DoublePair> appSortedWRanges;
wSize--;
delete s0;
delete s1;
}
// checkIntersections();
// double len = e->m_s->getLength();
// if (recomputeRegions)
if (m_computedAlmostOnce) {
computeRegions();
assert((int)edgeList.size() == wSize);
assert((int)m_strokes.size() > strokeIndex);
for (i = 0; i < wSize; i++)
transferColors(edgeList[i],
m_strokes[strokeIndex - wSize + i + 1]->m_edgeList, false,
false, false);
}
for (i = 0; i < wSize; i++) clearPointerContainer(edgeList[i]);
delete vs;
}
//-----------------------------------------------------------------------------
static void computeEdgeList(TStroke *newS, const std::list<TEdge *> &edgeList1,
bool join1AtBegin,
const std::list<TEdge *> &edgeList2,
bool join2AtBegin, std::list<TEdge *> &edgeList) {
std::list<TEdge *>::const_iterator it;
if (!edgeList1.empty()) {
TStroke *s1 = edgeList1.front()->m_s;
double length1 = s1->getLength();
;
for (it = edgeList1.begin(); it != edgeList1.end(); ++it) {
double l0 = s1->getLength((*it)->m_w0), l1 = s1->getLength((*it)->m_w1);
if (join1AtBegin) l0 = length1 - l0, l1 = length1 - l1;
TEdge *e = new TEdge();
e->m_toBeDeleted = true;
e->m_index = -1;
e->m_s = newS;
e->m_styleId = (*it)->m_styleId;
e->m_w0 = newS->getParameterAtLength(l0);
e->m_w1 = newS->getParameterAtLength(l1);
edgeList.push_back(e);
}
}
if (!edgeList2.empty()) {
TStroke *s2 = edgeList2.front()->m_s;
double offset = newS->getLength(newS->getW(s2->getPoint(0.0)));
double length2 = s2->getLength();
for (it = edgeList2.begin(); it != edgeList2.end(); ++it) {
double l0 = s2->getLength((*it)->m_w0), l1 = s2->getLength((*it)->m_w1);
if (!join2AtBegin) l0 = length2 - l0, l1 = length2 - l1;
TEdge *e = new TEdge();
e->m_toBeDeleted = true;
e->m_index = -1;
e->m_s = newS;
e->m_styleId = (*it)->m_styleId;
e->m_w0 = newS->getParameterAtLength(offset + l0);
e->m_w1 = newS->getParameterAtLength(offset + l1);
edgeList.push_back(e);
}
}
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
//#include "tpalette.h"
#include "tcolorstyles.h"
void printEdges(std::ofstream &os, char *str, TPalette *plt,
const std::list<TEdge *> &edges) {
std::list<TEdge *>::const_iterator it;
os << str << std::endl;
for (it = edges.begin(); it != edges.end(); ++it) {
TColorStyle *style = plt->getStyle((*it)->m_styleId);
TPixel32 color = style->getMainColor();
os << "w0-w1:(" << (*it)->m_w0 << "-->" << (*it)->m_w1 << ")" << std::endl;
os << "color=(" << color.r << "," << color.g << "," << color.b << ")"
<< std::endl;
}
os << std::endl << std::endl << std::endl;
}
#else
#define printEdges
#endif
//-----------------------------------------------------------------------------
#ifdef _DEBUG
void TVectorImage::Imp::printStrokes(std::ofstream &os) {
for (int i = 0; i < (int)m_strokes.size(); i++) {
os << "*****stroke #" << i << " *****";
m_strokes[i]->m_s->print(os);
}
}
#endif
//-----------------------------------------------------------------------------
TStroke *TVectorImage::removeEndpoints(int strokeIndex) {
return m_imp->removeEndpoints(strokeIndex);
}
void TVectorImage::restoreEndpoints(int index, TStroke *oldStroke) {
m_imp->restoreEndpoints(index, oldStroke);
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::Imp::extendStrokeSmoothly(int index,
const TThickPoint &pos,
int cpIndex) {
TStroke *stroke = m_strokes[index]->m_s;
TGroupId groupId = m_strokes[index]->m_groupId;
int cpCount = stroke->getControlPointCount();
int styleId = stroke->getStyle();
const TThickQuadratic *q =
stroke->getChunk(cpIndex == 0 ? 0 : stroke->getChunkCount() - 1);
double len = q->getLength();
double w = exp(-len * 0.01);
TThickPoint m = q->getThickP1();
TThickPoint p1 =
(cpIndex == 0 ? q->getThickP0() : q->getThickP2()) * (1 - w) + m * w;
TThickPoint middleP = (p1 + pos) * 0.5;
double angle = fabs(cross(normalize(m - middleP), normalize(pos - middleP)));
if (angle < 0.05) middleP = (m + pos) * 0.5;
stroke->setControlPoint(cpIndex, middleP);
if (isAlmostZero(len)) {
if (cpIndex == 0)
stroke->setControlPoint(1,
middleP * 0.1 + stroke->getControlPoint(2) * 0.9);
else
stroke->setControlPoint(
cpCount - 2,
middleP * 0.1 + stroke->getControlPoint(cpCount - 3) * 0.9);
}
std::vector<TThickPoint> points(cpCount);
for (int i = 0; i < cpCount - 1; i++)
points[i] = stroke->getControlPoint((cpIndex == 0) ? cpCount - i - 1 : i);
points[cpCount - 1] = pos;
TStroke *newStroke = new TStroke(points);
newStroke->setStyle(styleId);
newStroke->outlineOptions() = stroke->outlineOptions();
std::list<TEdge *> oldEdgeList, emptyList;
computeEdgeList(newStroke, m_strokes[index]->m_edgeList, cpIndex == 0,
emptyList, 0, oldEdgeList);
std::vector<int> toBeDeleted;
toBeDeleted.push_back(index);
removeStrokes(toBeDeleted, true, false);
insertStrokeAt(new VIStroke(newStroke, groupId), index, false);
computeRegions();
transferColors(oldEdgeList, m_strokes[index]->m_edgeList, true, false, true);
return m_strokes[index];
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::Imp::extendStroke(int index, const TThickPoint &p,
int cpIndex) {
TGroupId groupId = m_strokes[index]->m_groupId;
TStroke *stroke = m_strokes[index]->m_s;
TStroke *ret;
int cpCount = stroke->getControlPointCount();
int count = 0;
std::vector<TThickPoint> points(cpCount + 2);
int i, incr = (cpIndex == 0) ? -1 : 1;
for (i = ((cpIndex == 0) ? cpCount - 1 : 0); i != cpIndex + incr; i += incr)
points[count++] = stroke->getControlPoint(i);
TThickPoint tp(p, points[count - 1].thick);
points[count++] = 0.5 * (stroke->getControlPoint(cpIndex) + tp);
points[count++] = tp;
TStroke *newStroke = new TStroke(points);
newStroke->setStyle(stroke->getStyle());
newStroke->outlineOptions() = stroke->outlineOptions();
ret = newStroke;
std::list<TEdge *> oldEdgeList, emptyList;
if (m_computedAlmostOnce)
computeEdgeList(newStroke, m_strokes[index]->m_edgeList, cpIndex == 0,
emptyList, false, oldEdgeList);
std::vector<int> toBeDeleted;
toBeDeleted.push_back(index);
removeStrokes(toBeDeleted, true, false);
// removeStroke(index, false);
insertStrokeAt(new VIStroke(newStroke, groupId), index, false);
if (m_computedAlmostOnce) {
computeRegions();
transferColors(oldEdgeList, m_strokes[index]->m_edgeList, true, false,
true);
}
return m_strokes[index];
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::Imp::joinStroke(int index1, int index2, int cpIndex1,
int cpIndex2) {
assert(m_strokes[index1]->m_groupId == m_strokes[index2]->m_groupId);
TGroupId groupId = m_strokes[index1]->m_groupId;
TStroke *stroke1 = m_strokes[index1]->m_s;
TStroke *stroke2 = m_strokes[index2]->m_s;
// TStroke* ret;
int cpCount1 = stroke1->getControlPointCount();
int cpCount2 = stroke2->getControlPointCount();
int styleId = stroke1->getStyle();
// check if the both ends are at the same postion
bool isSamePos = isAlmostZero(tdistance2(stroke1->getControlPoint(cpIndex1),
stroke2->getControlPoint(cpIndex2)));
// connecting the ends in the same shape at the same postion
// means just making the shape self-looped
if (isSamePos && index1 == index2) {
stroke1->setSelfLoop();
return m_strokes[index1];
}
std::vector<TThickPoint> points;
int i, incr = (cpIndex1 == 0) ? -1 : 1;
int start = ((cpIndex1 == 0) ? cpCount1 - 1 : 0);
int end = (isSamePos) ? cpIndex1 : cpIndex1 + incr;
for (i = start; i != end; i += incr)
points.push_back(stroke1->getControlPoint(i));
points.push_back(0.5 * (stroke1->getControlPoint(cpIndex1) +
stroke2->getControlPoint(cpIndex2)));
if (index1 != index2) {
incr = (cpIndex2 == 0) ? 1 : -1;
start = (isSamePos) ? cpIndex2 + incr : cpIndex2;
end = ((cpIndex2 == 0) ? cpCount2 - 1 : 0) + incr;
for (i = start; i != end; i += incr)
points.push_back(stroke2->getControlPoint(i));
} else
points.push_back(stroke2->getControlPoint(cpIndex2));
TStroke *newStroke = new TStroke(points);
newStroke->setStyle(styleId);
newStroke->outlineOptions() = stroke1->outlineOptions();
// ret = newStroke;
if (index1 == index2) newStroke->setSelfLoop();
std::list<TEdge *> oldEdgeList, emptyList;
computeEdgeList(
newStroke, m_strokes[index1]->m_edgeList, cpIndex1 == 0,
(index1 != index2) ? m_strokes[index2]->m_edgeList : emptyList,
cpIndex2 == 0, oldEdgeList);
std::vector<int> toBeDeleted;
toBeDeleted.push_back(index1);
if (index1 != index2) toBeDeleted.push_back(index2);
removeStrokes(toBeDeleted, true, false);
insertStrokeAt(new VIStroke(newStroke, groupId), index1, false);
computeRegions();
transferColors(oldEdgeList, m_strokes[index1]->m_edgeList, true, false, true);
return m_strokes[index1];
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::Imp::joinStrokeSmoothly(int index1, int index2,
int cpIndex1, int cpIndex2) {
assert(m_strokes[index1]->m_groupId == m_strokes[index2]->m_groupId);
TGroupId groupId = m_strokes[index1]->m_groupId;
TStroke *stroke1 = m_strokes[index1]->m_s;
TStroke *stroke2 = m_strokes[index2]->m_s;
TStroke *ret;
int cpCount1 = stroke1->getControlPointCount();
int cpCount2 = stroke2->getControlPointCount();
int styleId = stroke1->getStyle();
int qCount1 = stroke1->getChunkCount();
int qCount2 = stroke2->getChunkCount();
const TThickQuadratic *q1 =
stroke1->getChunk(cpIndex1 == 0 ? 0 : qCount1 - 1);
const TThickQuadratic *q2 =
stroke2->getChunk(cpIndex2 == 0 ? 0 : qCount2 - 1);
double len1 = q1->getLength();
assert(len1 >= 0);
if (len1 <= 0) len1 = 0;
double w1 = exp(-len1 * 0.01);
double len2 = q2->getLength();
assert(len2 >= 0);
if (len2 <= 0) len2 = 0;
double w2 = exp(-len2 * 0.01);
TThickPoint extreme1 = cpIndex1 == 0 ? q1->getThickP0() : q1->getThickP2();
TThickPoint extreme2 = cpIndex2 == 0 ? q2->getThickP0() : q2->getThickP2();
TThickPoint m1 = q1->getThickP1();
TThickPoint m2 = q2->getThickP1();
TThickPoint p1 = extreme1 * (1 - w1) + m1 * w1;
TThickPoint p2 = extreme2 * (1 - w2) + m2 * w2;
TThickPoint middleP = (p1 + p2) * 0.5;
double angle = fabs(cross(normalize(m1 - middleP), normalize(m2 - middleP)));
if (angle < 0.05) middleP = (m1 + m2) * 0.5;
stroke1->setControlPoint(cpIndex1, middleP);
if (isAlmostZero(len1)) {
if (cpIndex1 == 0)
stroke1->setControlPoint(
1, middleP * 0.1 + stroke1->getControlPoint(2) * 0.9);
else
stroke1->setControlPoint(
cpCount1 - 2,
middleP * 0.1 + stroke1->getControlPoint(cpCount1 - 3) * 0.9);
}
stroke2->setControlPoint(cpIndex2, middleP);
if (isAlmostZero(len2)) {
if (cpIndex2 == 0)
stroke2->setControlPoint(
1, middleP * 0.1 + stroke2->getControlPoint(2) * 0.9);
else
stroke2->setControlPoint(
cpCount2 - 2,
middleP * 0.1 + stroke2->getControlPoint(cpCount2 - 3) * 0.9);
}
if (stroke1 == stroke2) {
std::list<TEdge *> oldEdgeList, emptyList;
computeEdgeList(stroke1, m_strokes[index1]->m_edgeList, cpIndex1 == 0,
emptyList, false, oldEdgeList);
eraseIntersection(index1);
m_strokes[index1]->m_isNewForFill = true;
stroke1->setSelfLoop();
computeRegions();
transferColors(oldEdgeList, m_strokes[index1]->m_edgeList, true, false,
true);
return m_strokes[index1];
// nundo->m_newStroke=new TStroke(*stroke1);
// nundo->m_newStrokeId=stroke1->getId();
}
std::vector<TThickPoint> points;
points.reserve(cpCount1 + cpCount2 - 1);
int incr = (cpIndex1) ? 1 : -1;
int stop = cpIndex1;
int i = cpCount1 - 1 - cpIndex1;
for (; i != stop; i += incr) points.push_back(stroke1->getControlPoint(i));
incr = (cpIndex2) ? -1 : 1;
stop = cpCount2 - 1 - cpIndex2;
for (i = cpIndex2; i != stop; i += incr)
points.push_back(stroke2->getControlPoint(i));
points.push_back(stroke2->getControlPoint(stop));
TStroke *newStroke = new TStroke(points);
newStroke->setStyle(styleId);
newStroke->outlineOptions() = stroke1->outlineOptions();
ret = newStroke;
// nundo->m_newStroke=new TStroke(*newStroke);
// nundo->m_newStrokeId=newStroke->getId();
std::list<TEdge *> oldEdgeList;
// ofstream os("c:\\temp\\edges.txt");
// printEdges(os, "****edgelist1", getPalette(),
// m_imp->m_strokes[index1]->m_edgeList);
// printEdges(os, "****edgelist2", getPalette(),
// m_imp->m_strokes[index2]->m_edgeList);
computeEdgeList(newStroke, m_strokes[index1]->m_edgeList, cpIndex1 == 0,
m_strokes[index2]->m_edgeList, cpIndex2 == 0, oldEdgeList);
// printEdges(os, "****edgelist", getPalette(), oldEdgeList);
std::vector<int> toBeDeleted;
toBeDeleted.push_back(index1);
toBeDeleted.push_back(index2);
removeStrokes(toBeDeleted, true, false);
insertStrokeAt(new VIStroke(newStroke, groupId), index1);
computeRegions();
transferColors(oldEdgeList, m_strokes[index1]->m_edgeList, true, false, true);
return m_strokes[index1];
// TUndoManager::manager()->add(nundo);
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::joinStroke(int index1, int index2, int cpIndex1,
int cpIndex2, bool isSmooth) {
int finalStyle = -1;
if (index1 > index2) {
finalStyle = getStroke(index1)->getStyle();
std::swap(index1, index2);
std::swap(cpIndex1, cpIndex2);
}
/*
if (index1==index2) //selfLoop!
{
if (index1>0 && index1<(int)getStrokeCount()-1 &&
!getStroke(index1-1)->isSelfLoop() &&
!getStroke(index1+1)->isSelfLoop())
{
for (UINT i = index1+2; i<getStrokeCount() && !getStroke(i)->isSelfLoop(); i++)
;
moveStroke(index1, i-1);
index1 = index2 = i-1;
}
}
*/
VIStroke *ret;
if (isSmooth)
ret = m_imp->joinStrokeSmoothly(index1, index2, cpIndex1, cpIndex2);
else
ret = m_imp->joinStroke(index1, index2, cpIndex1, cpIndex2);
if (finalStyle != -1) getStroke(index1)->setStyle(finalStyle);
return ret;
}
//-----------------------------------------------------------------------------
VIStroke *TVectorImage::extendStroke(int index, const TThickPoint &p,
int cpIndex, bool isSmooth) {
if (isSmooth)
return m_imp->extendStrokeSmoothly(index, p, cpIndex);
else
return m_imp->extendStroke(index, p, cpIndex);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
TInputStreamInterface &TInputStreamInterface::operator>>(TPixel32 &pixel) {
return *this >> pixel.r >> pixel.g >> pixel.b >> pixel.m;
}
//-------------------------------------------------------------------
TOutputStreamInterface &TOutputStreamInterface::operator<<(
const TPixel32 &pixel) {
return *this << pixel.r << pixel.g << pixel.b << pixel.m;
}
//-------------------------------------------------------------------
void TVectorImage::setAutocloseTolerance(double val) {
m_imp->m_autocloseTolerance = val;
}
//-------------------------------------------------------------------
double TVectorImage::getAutocloseTolerance() const {
return m_imp->m_autocloseTolerance;
}
//-------------------------------------------------------------------
TThread::Mutex *TVectorImage::getMutex() const { return m_imp->m_mutex; }
//-------------------------------------------------------------------
void TVectorImage::areaFill(TStroke *stroke, int index, bool m_onlyUnfilled) {
TVectorImage v;
v.addStroke(stroke);
v.findRegions();
for (UINT i = 0; i < v.getRegionCount(); i++)
for (UINT j = 0; j < getRegionCount(); j++) {
if (m_imp->m_insideGroup != TGroupId() &&
!m_imp->m_insideGroup.isParentOf(
m_imp->m_strokes[getRegion(j)->getEdge(0)->m_index]->m_groupId))
continue;
if (v.getRegion(i)->contains(*getRegion(j)))
getRegion(j)->setStyle(index);
}
v.removeStroke(0);
}
VIStroke *cloneVIStroke(VIStroke *vs) { return new VIStroke(*vs); }
void deleteVIStroke(VIStroke *vs) {
delete vs;
vs = 0;
}
//-------------------------------------------------------------------
bool TVectorImage::sameSubGroup(int index0, int index1) const {
if (index0 < 0 || index1 < 0) return 0;
return m_imp->m_strokes[index0]->m_groupId.getCommonParentDepth(
m_imp->m_strokes[index1]->m_groupId) >
m_imp->m_insideGroup.getDepth();
}
//-------------------------------------------------------------------
int TVectorImage::getCommonGroupDepth(int index0, int index1) const {
if (index0 < 0 || index1 < 0) return 0;
return m_imp->m_strokes[index0]->m_groupId.getCommonParentDepth(
m_imp->m_strokes[index1]->m_groupId);
}
//-------------------------------------------------------------------
int TVectorImage::ungroup(int fromIndex) {
m_imp->m_insideGroup = TGroupId();
assert(m_imp->m_strokes[fromIndex]->m_groupId.isGrouped() != 0);
std::vector<int> changedStrokes;
int toIndex = fromIndex + 1;
while (toIndex < (int)m_imp->m_strokes.size() &&
m_imp->m_strokes[fromIndex]->m_groupId.getCommonParentDepth(
m_imp->m_strokes[toIndex]->m_groupId) >= 1)
toIndex++;
toIndex--;
TGroupId groupId;
if (fromIndex > 0 &&
m_imp->m_strokes[fromIndex - 1]->m_groupId.isGrouped(true) != 0)
groupId = m_imp->m_strokes[fromIndex - 1]->m_groupId;
else if (toIndex < (int)m_imp->m_strokes.size() - 1 &&
m_imp->m_strokes[toIndex + 1]->m_groupId.isGrouped(true) != 0)
groupId = m_imp->m_strokes[toIndex + 1]->m_groupId;
else
groupId = TGroupId(this, true);
for (int i = fromIndex;
i <= toIndex || (i < (int)m_imp->m_strokes.size() &&
m_imp->m_strokes[i]->m_groupId.isGrouped(true) != 0);
i++) {
m_imp->m_strokes[i]->m_groupId.ungroup(groupId);
changedStrokes.push_back(i);
}
notifyChangedStrokes(changedStrokes, std::vector<TStroke *>(), false);
return toIndex - fromIndex + 1;
}
//-------------------------------------------------------------------
bool TVectorImage::isEnteredGroupStroke(int index) const {
return m_imp->m_insideGroup.isParentOf(getVIStroke(index)->m_groupId);
}
//-------------------------------------------------------------------
bool TVectorImage::enterGroup(int index) {
VIStroke *vs = getVIStroke(index);
if (!vs->m_groupId.isGrouped()) return false;
int newDepth = vs->m_groupId.getCommonParentDepth(m_imp->m_insideGroup) + 1;
TGroupId newGroupId = vs->m_groupId;
while (newGroupId.getDepth() > newDepth) newGroupId = newGroupId.getParent();
if (newGroupId == m_imp->m_insideGroup) return false;
m_imp->m_insideGroup = newGroupId;
return true;
}
//-------------------------------------------------------------------
int TVectorImage::exitGroup() {
if (m_imp->m_insideGroup == TGroupId()) return -1;
int i, ret = -1;
for (i = 0; i < (int)m_imp->m_strokes.size(); i++) {
if (m_imp->m_strokes[i]->m_groupId.getCommonParentDepth(
m_imp->m_insideGroup) >= m_imp->m_insideGroup.getDepth()) {
ret = i;
break;
}
}
assert(i != m_imp->m_strokes.size());
m_imp->m_insideGroup = m_imp->m_insideGroup.getParent();
return ret;
}
//-------------------------------------------------------------------
void TVectorImage::group(int fromIndex, int count) {
int i;
assert(count >= 0);
std::vector<int> changedStroke;
TGroupId parent = TGroupId(this, false);
for (i = 0; i < count; i++) {
m_imp->m_strokes[fromIndex + i]->m_groupId =
TGroupId(parent, m_imp->m_strokes[fromIndex + i]->m_groupId);
changedStroke.push_back(fromIndex + i);
}
m_imp->rearrangeMultiGroup(); // see method's comment
m_imp->regroupGhosts(changedStroke);
notifyChangedStrokes(changedStroke, std::vector<TStroke *>(), false);
#ifdef _DEBUG
m_imp->checkGroups();
#endif
}
//-------------------------------------------------------------------
int TVectorImage::getGroupDepth(UINT index) const {
assert(index < m_imp->m_strokes.size());
return m_imp->m_strokes[index]->m_groupId.isGrouped();
}
//-------------------------------------------------------------------
int TVectorImage::areDifferentGroup(UINT index1, bool isRegion1, UINT index2,
bool isRegion2) const {
return m_imp->areDifferentGroup(index1, isRegion1, index2, isRegion2);
}
//-------------------------------------------------------------------
/*this method is tricky.
it is not allow to have not-adiacent strokes of same group.
but it can happen when you group some already-grouped strokes creating
sub-groups.
example: vi made of 5 strokes, before grouping (N=no group)
N
N
1
1
N
after grouping became:
2
2
2-1
2-1
2
not allowed!
this method moves strokes, so that adiacent strokes have same group.
so after calling rearrangeMultiGroup the vi became:
2
2
2
2-1
2-1
*/
void TVectorImage::Imp::rearrangeMultiGroup() {
UINT i, j, k;
if (m_strokes.size() <= 0) return;
for (i = 0; i < m_strokes.size() - 1; i++) {
if (m_strokes[i]->m_groupId.isGrouped() &&
m_strokes[i + 1]->m_groupId.isGrouped() &&
m_strokes[i]->m_groupId != m_strokes[i + 1]->m_groupId) {
TGroupId &prevId = m_strokes[i]->m_groupId;
TGroupId &idToMove = m_strokes[i + 1]->m_groupId;
for (j = i + 1;
j < m_strokes.size() && m_strokes[j]->m_groupId == idToMove; j++)
;
if (j != m_strokes.size()) {
j--; // now range i+1-j contains the strokes to be moved.
// let's compute where to move them (after last
for (k = j; k < m_strokes.size() && m_strokes[k]->m_groupId != prevId;
k++)
;
if (k < m_strokes.size()) {
for (; k < m_strokes.size() && m_strokes[k]->m_groupId == prevId; k++)
;
moveStrokes(i + 1, j - i, k, false);
rearrangeMultiGroup();
return;
}
}
}
}
}
//-------------------------------------------------------------------
int TVectorImage::Imp::areDifferentGroup(UINT index1, bool isRegion1,
UINT index2, bool isRegion2) const {
TGroupId group1, group2;
if (isRegion1) {
TRegion *r = m_regions[index1];
for (UINT i = 0; i < r->getEdgeCount(); i++)
if (r->getEdge(i)->m_index >= 0) {
group1 = m_strokes[r->getEdge(i)->m_index]->m_groupId;
break;
}
} else
group1 = m_strokes[index1]->m_groupId;
if (isRegion2) {
TRegion *r = m_regions[index2];
for (UINT i = 0; i < r->getEdgeCount(); i++)
if (r->getEdge(i)->m_index >= 0) {
group2 = m_strokes[r->getEdge(i)->m_index]->m_groupId;
break;
}
} else
group2 = m_strokes[index2]->m_groupId;
if (!group1 && !group2) return 0;
if (group1 == group2)
return -1;
else
return group1.getCommonParentDepth(group2);
}
//-------------------------------------------------------------------
int TGroupId::getCommonParentDepth(const TGroupId &id) const {
int size1 = m_id.size();
int size2 = id.m_id.size();
int count;
for (count = 0; count < std::min(size1, size2); count++)
if (m_id[size1 - count - 1] != id.m_id[size2 - count - 1]) break;
return count;
}
//-------------------------------------------------------------------
TGroupId::TGroupId(const TGroupId &parent, const TGroupId &id) {
assert(parent.m_id[0] > 0);
assert(id.m_id.size() > 0);
if (id.isGrouped(true) != 0)
m_id.push_back(parent.m_id[0]);
else {
m_id = id.m_id;
int i;
for (i = 0; i < (int)parent.m_id.size(); i++)
m_id.push_back(parent.m_id[i]);
}
}
/*
bool TGroupId::sameParent(const TGroupId& id) const
{
assert(!m_id.empty() || !id.m_id.empty());
return m_id.back()==id.m_id.back();
}
*/
TGroupId TGroupId::getParent() const {
if (m_id.size() <= 1) return TGroupId();
TGroupId ret = *this;
ret.m_id.erase(ret.m_id.begin());
return ret;
}
void TGroupId::ungroup(const TGroupId &id) {
assert(id.isGrouped(true) != 0);
assert(!m_id.empty());
if (m_id.size() == 1)
m_id[0] = id.m_id[0];
else
m_id.pop_back();
}
bool TGroupId::operator==(const TGroupId &id) const {
if (m_id.size() != id.m_id.size()) return false;
UINT i;
for (i = 0; i < m_id.size(); i++)
if (m_id[i] != id.m_id[i]) return false;
return true;
}
bool TGroupId::operator<(const TGroupId &id) const {
assert(!m_id.empty() && !id.m_id.empty());
int size1 = m_id.size();
int size2 = id.m_id.size();
int i;
for (i = 0; i < std::min(size1, size2); i++)
if (m_id[size1 - i - 1] != id.m_id[size2 - i - 1])
return m_id[size1 - i - 1] < id.m_id[size2 - i - 1];
return size1 < size2;
}
//-------------------------------------------------------------------
int TGroupId::isGrouped(bool implicit) const {
assert(!m_id.empty());
assert(m_id[0] != 0);
if (implicit)
return (m_id[0] < 0) ? 1 : 0;
else
return (m_id[0] > 0) ? m_id.size() : 0;
}
//-------------------------------------------------------------------
TGroupId::TGroupId(TVectorImage *vi, bool isGhost) {
m_id.push_back((isGhost) ? -(++vi->m_imp->m_maxGhostGroupId)
: ++vi->m_imp->m_maxGroupId);
}
#ifdef _DEBUG
void TVectorImage::Imp::checkGroups() {
TGroupId currGroupId;
std::set<TGroupId> groupSet;
std::set<TGroupId>::iterator it;
UINT i = 0;
while (i < m_strokes.size()) {
// assert(m_strokes[i]->m_groupId!=currGroupId);
// assert(i==0 ||
// m_strokes[i-1]->m_groupId.isGrouped()!=m_strokes[i]->m_groupId.isGrouped()!=0
// ||
// (m_strokes[i]->m_groupId.isGrouped()!=0 &&
// m_strokes[i-1]->m_groupId!=m_strokes[i]->m_groupId));
currGroupId = m_strokes[i]->m_groupId;
it = groupSet.find(currGroupId);
if (it != groupSet.end()) // esisteva gia un gruppo con questo id!
assert(!"errore: due gruppi con lo stesso id!");
else
groupSet.insert(currGroupId);
while (i < m_strokes.size() && m_strokes[i]->m_groupId == currGroupId) i++;
}
}
#endif
//-------------------------------------------------------------------
bool TVectorImage::canMoveStrokes(int strokeIndex, int count,
int moveBefore) const {
return m_imp->canMoveStrokes(strokeIndex, count, moveBefore);
}
//-------------------------------------------------------------------
// verifica se si possono spostare le stroke da strokeindex a
// strokeindex+count-1 prima della posizione moveBefore;
// per fare questo fa un vettore in cui mette tutti i gruppi nella posizione
// dopo lo
// spostamento e verifica che sia un configurazione di gruppi ammessa.
bool TVectorImage::Imp::canMoveStrokes(int strokeIndex, int count,
int moveBefore) const {
if (m_maxGroupId <= 1) // non ci sono gruppi!
return true;
int i, j = 0;
std::vector<TGroupId> groupsAfterMoving(m_strokes.size());
if (strokeIndex < moveBefore) {
for (i = 0; i < strokeIndex; i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
for (i = strokeIndex + count; i < moveBefore; i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
for (i = strokeIndex; i < strokeIndex + count; i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
for (i = moveBefore; i < (int)m_strokes.size(); i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
} else {
for (i = 0; i < moveBefore; i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
for (i = strokeIndex; i < strokeIndex + count; i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
for (i = moveBefore; i < strokeIndex; i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
for (i = strokeIndex + count; i < (int)m_strokes.size(); i++)
groupsAfterMoving[j++] = m_strokes[i]->m_groupId;
}
assert(j == (int)m_strokes.size());
i = 0;
TGroupId currGroupId;
std::set<TGroupId> groupSet;
while (i < (int)groupsAfterMoving.size()) {
currGroupId = groupsAfterMoving[i];
if (groupSet.find(currGroupId) !=
groupSet.end()) // esisteva gia un gruppo con questo id!
{
if (!currGroupId.isGrouped(true)) // i gruppi impliciti non contano
return false;
} else
groupSet.insert(currGroupId);
while (i < (int)groupsAfterMoving.size() &&
groupsAfterMoving[i] == currGroupId)
i++;
}
return true;
}
//-----------------------------------------------------------------
void TVectorImage::Imp::regroupGhosts(std::vector<int> &changedStrokes) {
TGroupId currGroupId;
std::set<TGroupId> groupMap;
std::set<TGroupId>::iterator it;
UINT i = 0;
while (i < m_strokes.size()) {
assert(m_strokes[i]->m_groupId != currGroupId);
assert(i == 0 ||
m_strokes[i - 1]->m_groupId.isGrouped() !=
m_strokes[i]->m_groupId.isGrouped() != 0 ||
(m_strokes[i]->m_groupId.isGrouped() != 0 &&
m_strokes[i - 1]->m_groupId != m_strokes[i]->m_groupId));
currGroupId = m_strokes[i]->m_groupId;
it = groupMap.find(currGroupId);
if (it != groupMap.end()) // esisteva gia un gruppo con questo id!
{
if (currGroupId.isGrouped() != 0)
assert(!"errore: due gruppi con lo stesso id!");
else // gruppo ghost; gli do un nuovo id
{
TGroupId newGroup(m_vi, true);
while (i < m_strokes.size() &&
m_strokes[i]->m_groupId.isGrouped(true) != 0) {
m_strokes[i]->m_groupId = newGroup;
changedStrokes.push_back(i);
i++;
}
}
} else {
groupMap.insert(currGroupId);
while (i < m_strokes.size() &&
((currGroupId.isGrouped(false) != 0 &&
m_strokes[i]->m_groupId == currGroupId) ||
(currGroupId.isGrouped(true) != 0 &&
m_strokes[i]->m_groupId.isGrouped(true) != 0))) {
if (m_strokes[i]->m_groupId != currGroupId) {
m_strokes[i]->m_groupId = currGroupId;
changedStrokes.push_back(i);
}
i++;
}
}
}
}
//--------------------------------------------------------------
bool TVectorImage::canEnterGroup(int strokeIndex) const {
VIStroke *vs = m_imp->m_strokes[strokeIndex];
if (!vs->m_groupId.isGrouped()) return false;
return m_imp->m_insideGroup == TGroupId() ||
vs->m_groupId != m_imp->m_insideGroup;
}
//--------------------------------------------------------------
bool TVectorImage::inCurrentGroup(int strokeIndex) const {
return m_imp->inCurrentGroup(strokeIndex);
}
//----------------------------------------------------------------------------------
bool TVectorImage::Imp::inCurrentGroup(int strokeIndex) const {
return m_insideGroup == TGroupId() ||
m_insideGroup.isParentOf(m_strokes[strokeIndex]->m_groupId);
}
//--------------------------------------------------------------------------------------------------
bool TVectorImage::selectable(int strokeIndex) const {
return (m_imp->m_insideGroup != m_imp->m_strokes[strokeIndex]->m_groupId &&
inCurrentGroup(strokeIndex));
}
//--------------------------------------------------------------------------------------------------
namespace {
bool containsNoSubregion(const TRegion *r, const TPointD &p) {
if (r->contains(p)) {
for (unsigned int i = 0; i < r->getSubregionCount(); i++)
if (r->getSubregion(i)->contains(p)) return false;
return true;
} else
return false;
}
}; // namespace
//------------------------------------------------------
int TVectorImage::getGroupByStroke(UINT index) const {
VIStroke *viStroke = getVIStroke(index);
return viStroke->m_groupId.m_id.back();
}
//------------------------------------------------------
int TVectorImage::getGroupByRegion(UINT index) const {
TRegion *r = m_imp->m_regions[index];
for (UINT i = 0; i < r->getEdgeCount(); i++)
if (r->getEdge(i)->m_index >= 0) {
return m_imp->m_strokes[r->getEdge(i)->m_index]->m_groupId.m_id.back();
}
return -1;
}
//------------------------------------------------------
int TVectorImage::pickGroup(const TPointD &pos, bool onEnteredGroup) const {
if (onEnteredGroup && isInsideGroup() == 0) return -1;
// double maxDist2 = 50*tglGetPixelSize2();
int strokeIndex = getStrokeCount() - 1;
while (strokeIndex >=
0) // ogni ciclo di while esplora un gruppo; ciclo sugli stroke
{
if (!isStrokeGrouped(strokeIndex)) {
strokeIndex--;
continue;
}
bool entered = isInsideGroup() > 0 && isEnteredGroupStroke(strokeIndex);
if ((onEnteredGroup || entered) && (!onEnteredGroup || !entered)) {
strokeIndex--;
continue;
}
int currStrokeIndex = strokeIndex;
while (strokeIndex >= 0 &&
getCommonGroupDepth(strokeIndex, currStrokeIndex) > 0) {
TStroke *s = getStroke(strokeIndex);
double outT;
int chunkIndex;
double dist2;
bool ret = s->getNearestChunk(pos, outT, chunkIndex, dist2);
if (ret) {
TThickPoint p = s->getChunk(chunkIndex)->getThickPoint(outT);
if (p.thick < 0.1) p.thick = 1;
if (sqrt(dist2) <= 1.5 * p.thick) return strokeIndex;
}
/*TThickPoint p = s->getThickPoint(s->getW(pos));
double dist = tdistance( TThickPoint(pos,0), p);
if (dist<1.2*p.thick/2.0)
return strokeIndex;*/
strokeIndex--;
}
}
strokeIndex = getStrokeCount() - 1;
int ret = -1;
while (strokeIndex >=
0) // ogni ciclo di while esplora un gruppo; ciclo sulle regions
{
if (!isStrokeGrouped(strokeIndex)) {
strokeIndex--;
continue;
}
bool entered = isInsideGroup() > 0 && isEnteredGroupStroke(strokeIndex);
if ((onEnteredGroup || entered) && (!onEnteredGroup || !entered)) {
strokeIndex--;
continue;
}
TRegion *currR = 0;
for (UINT regionIndex = 0; regionIndex < getRegionCount(); regionIndex++) {
TRegion *r = getRegion(regionIndex);
int i, regionStrokeIndex = -1;
for (i = 0; i < (int)r->getEdgeCount() && regionStrokeIndex < 0; i++)
regionStrokeIndex = r->getEdge(i)->m_index;
if (regionStrokeIndex >= 0 &&
sameSubGroup(regionStrokeIndex, strokeIndex) &&
containsNoSubregion(r, pos)) {
if (!currR || currR->contains(*r)) {
currR = r;
ret = regionStrokeIndex;
}
}
}
if (currR != 0) {
assert(m_palette);
const TSolidColorStyle *st = dynamic_cast<const TSolidColorStyle *>(
m_palette->getStyle(currR->getStyle()));
if (!st || st->getMainColor() != TPixel::Transparent) return ret;
}
while (strokeIndex > 0 &&
getCommonGroupDepth(strokeIndex, strokeIndex - 1) > 0)
strokeIndex--;
strokeIndex--;
}
return -1;
}
//------------------------------------------------------------------------------------
int TVectorImage::pickGroup(const TPointD &pos) const {
int index;
if ((index = pickGroup(pos, true)) == -1) return pickGroup(pos, false);
return index;
}
//--------------------------------------------------------------------------------------------------