#include "toonz/cellpositionratio.h"
#include <stdexcept>
#include <algorithm>
// Euclid's algorithm
int greatestCommonDivisor(int a, int b) {
a = std::abs(a);
b = std::abs(b);
int c = std::max(a, b);
int d = std::min(a, b);
while (d) {
int q = c / d;
int r = c % d;
c = d;
d = r;
}
return c;
}
int leastCommonMultiple(int a, int b) {
return a * b / greatestCommonDivisor(a, b);
}
void Ratio::normalize() {
int gcd = greatestCommonDivisor(m_num, m_denom);
if (m_denom < 0) gcd = -gcd;
m_num /= gcd;
m_denom /= gcd;
}
Ratio Ratio::normalized() const {
Ratio copy(*this);
copy.normalize();
return copy;
}
Ratio::Ratio(int num, int denom) : m_num(num), m_denom(denom) {
if (!denom) throw std::runtime_error("ratio with denominator == 0");
normalize();
}
Ratio operator*(const Ratio &a, const Ratio &b) {
return Ratio(a.m_num * b.m_num, a.m_denom * b.m_denom);
}
Ratio operator/(const Ratio &a, const Ratio &b) {
return Ratio(a.m_num * b.m_denom, a.m_denom * b.m_num);
}
Ratio operator+(const Ratio &a, const Ratio &b) {
int gcd = greatestCommonDivisor(a.m_denom, b.m_denom);
int denom = a.m_denom * b.m_denom / gcd;
int aMult = b.m_denom * gcd;
int bMult = a.m_denom * gcd;
return Ratio(a.m_num * aMult + b.m_num * bMult, denom);
}
Ratio operator-(const Ratio &a, const Ratio &b) {
int gcd = greatestCommonDivisor(a.m_denom, b.m_denom);
int denom = a.m_denom * b.m_denom / gcd;
int aMult = b.m_denom * gcd;
int bMult = a.m_denom * gcd;
return Ratio(a.m_num * aMult - b.m_num * bMult, denom);
}
int operator*(const Ratio &a, int b) { return a.m_num * b / a.m_denom; }