#include "toonzqt/lutcalibrator.h"
// Tnzlib includes
#include "toonz/preferences.h"
// TnzCore includes
#include "tmsgcore.h"
#include <QOpenGLShader>
#include <QOpenGLShaderProgram>
#include <QOpenGLFramebufferObject>
#include <QOpenGLTexture>
#include <QOpenGLContext>
#include <QOffscreenSurface>
#include <QFile>
#include <QColor>
namespace {
inline bool execWarning(const QString& s) {
DVGui::MsgBox(DVGui::WARNING, s);
return false;
}
};
#ifdef WIN32
#include <QStringList>
#include <QSettings>
#include <QByteArray>
namespace {
// obtain monitor information from registry
QStringList getMonitorNames() {
QStringList subPathSet;
// QSettings regSys("SYSTEM\\CurrentControlSet\\Enum\\DISPLAY",
// QSettings::NativeFormat);
QSettings regSys(
"HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Enum\\DISPLAY",
QSettings::NativeFormat);
QStringList children = regSys.childGroups();
// return value
QStringList nameList;
if (children.isEmpty()) {
std::cout << "getMonitorNames : Failed to Open Registry" << std::endl;
return nameList;
}
for (int c = 0; c < children.size(); c++) {
// Parent Key : DISPLAY
// Child Keys : AVO0000, ENC2174, etc.
// Grandchild Key : 5&388..
// Find grandchild key which contains a great-grandchild key named "Control"
regSys.beginGroup(children.at(c)); // Child keys : AVO0000, ENC2174, etc.
QStringList grandChildren = regSys.childGroups();
for (int gc = 0; gc < grandChildren.size(); gc++) {
regSys.beginGroup(grandChildren.at(gc)); // Grandchild key : 5&388..
QStringList greatGrandChildren = regSys.childGroups();
if (greatGrandChildren.contains(
"Control")) // If the key "Control" is found
{
// Obtain variable "EDID" from the key "Device Parameters"
regSys.beginGroup("Device Parameters");
// the key may be not "EDID", but "BAD_EDID"
if (regSys.contains("EDID")) {
QString subPath = regSys.group().replace("/", "\\").prepend(
"SYSTEM\\CurrentControlSet\\Enum\\DISPLAY\\");
subPathSet.push_back(subPath);
}
regSys.endGroup();
}
regSys.endGroup();
}
// subPath may not be one...?
// if(!subPath.isEmpty())
// break;
regSys.endGroup();
}
if (subPathSet.isEmpty()) {
std::cout << "getMonitorNames : Failed to Find Current EDID" << std::endl;
return nameList;
}
// for each subPath ( it may become more than one when using submonitor )
for (int sp = 0; sp < subPathSet.size(); sp++) {
QString subPath = subPathSet.at(sp);
HKEY handle = 0;
LONG res = RegOpenKeyExW(HKEY_LOCAL_MACHINE,
reinterpret_cast<const wchar_t*>(subPath.utf16()),
0, KEY_READ, &handle);
if (res == ERROR_SUCCESS && handle) {
QString keyStr("EDID");
// get the size and type of the value
DWORD dataType;
DWORD dataSize;
LONG res = RegQueryValueExW(
handle, reinterpret_cast<const wchar_t*>(keyStr.utf16()), 0,
&dataType, 0, &dataSize);
if (res != ERROR_SUCCESS) {
RegCloseKey(handle);
continue;
}
// get the value
QByteArray ba(dataSize, 0);
res = RegQueryValueExW(
handle, reinterpret_cast<const wchar_t*>(keyStr.utf16()), 0, 0,
reinterpret_cast<unsigned char*>(ba.data()), &dataSize);
if (res != ERROR_SUCCESS) {
RegCloseKey(handle);
continue;
}
QString s;
if (dataSize) {
s = QString::fromUtf16((const ushort*)ba.constData(), ba.size() / 2);
}
QString valStr;
QList<int> valArray;
for (int b = 0; b < s.length(); b++) {
QChar c1((int)s[b].unicode() % 256);
QChar c2((int)s[b].unicode() / 256);
valStr.append(c1.toLatin1());
valStr.append(c2.toLatin1());
valArray.append((int)s[b].unicode() % 256);
valArray.append((int)s[b].unicode() / 256);
}
// machine name starts from "FC 00", end with "0A"
int index1 = valArray.indexOf(252); // FC
int index2 = valArray.indexOf(10, index1); // 0A
if (index1 > 0 && index2 > 0) {
QString machineName = valStr.mid(index1 + 2, index2 - index1 - 2);
nameList.push_back(machineName);
// std::wcout << "machine name = " << machineName.toStdWString() <<
// std::endl;
}
RegCloseKey(handle);
} else {
std::cout << "getMonitorNames : failed to get handle" << std::endl;
continue;
}
}
if (nameList.isEmpty())
std::cout << "getMonitorNames : No Monitor Name Found" << std::endl;
return nameList;
}
};
#endif
//-----------------------------------------------------------------------------
void LutCalibrator::initialize() {
initializeOpenGLFunctions();
if (!LutManager::instance()->isValid()) return;
// create shader
if (!initializeLutTextureShader()) {
if (m_shader.program) delete m_shader.program;
if (m_shader.vert) delete m_shader.vert;
if (m_shader.frag) delete m_shader.frag;
return;
}
createViewerVBO();
// input 3dlut data to the shader
assignLutTexture();
m_isValid = true;
return;
}
//-----------------------------------------------------------------------------
void LutCalibrator::cleanup() {
if (!isValid()) return;
// release shader
if (m_shader.program) {
delete m_shader.program;
m_shader.program = NULL;
}
if (m_shader.vert) {
delete m_shader.vert;
m_shader.vert = NULL;
}
if (m_shader.frag) {
delete m_shader.frag;
m_shader.frag = NULL;
}
// release VBO
if (m_viewerVBO.isCreated()) m_viewerVBO.destroy();
// release LUT texture
if (m_lutTex && m_lutTex->isCreated()) {
m_lutTex->destroy();
delete m_lutTex;
m_lutTex = NULL;
}
}
//-----------------------------------------------------------------------------
bool LutCalibrator::initializeLutTextureShader() {
m_shader.vert = new QOpenGLShader(QOpenGLShader::Vertex);
const char* simple_vsrc =
"#version 330 core\n"
"// Input vertex data, different for all executions of this shader.\n"
"layout(location = 0) in vec3 vertexPosition;\n"
"layout(location = 1) in vec2 texCoord;\n"
"// Output data ; will be interpolated for each fragment.\n"
"out vec2 UV;\n"
"// Values that stay constant for the whole mesh.\n"
"void main() {\n"
" // Output position of the vertex, in clip space : MVP * position\n"
" gl_Position = vec4(vertexPosition, 1);\n"
" // UV of the vertex. No special space for this one.\n"
" UV = texCoord;\n"
"}\n";
bool ret = m_shader.vert->compileSourceCode(simple_vsrc);
if (!ret)
return execWarning(
QObject::tr("Failed to compile m_textureShader.vert.", "gl"));
m_shader.frag = new QOpenGLShader(QOpenGLShader::Fragment);
const char* simple_fsrc =
"#version 330 core \n"
"// Interpolated values from the vertex shaders \n"
"in vec2 UV; \n"
"// Ouput data \n"
"out vec4 color; \n"
"// Values that stay constant for the whole mesh. \n"
"uniform sampler2D tex; \n"
"uniform sampler3D lut; \n"
"uniform vec3 lutSize; \n"
"void main() { \n"
" vec3 rawColor = texture(tex,UV).rgb; \n"
" vec3 scale = (lutSize - 1.0) / lutSize; \n"
" vec3 offset = 1.0 / (2.0 * lutSize); \n"
" color = vec4(texture(lut, scale * rawColor + offset).rgb, 1.0); \n"
"} \n";
ret = m_shader.frag->compileSourceCode(simple_fsrc);
if (!ret)
return execWarning(QObject::tr("Failed to compile m_shader.frag.", "gl"));
m_shader.program = new QOpenGLShaderProgram();
// add shaders
ret = m_shader.program->addShader(m_shader.vert);
if (!ret)
return execWarning(QObject::tr("Failed to add m_shader.vert.", "gl"));
ret = m_shader.program->addShader(m_shader.frag);
if (!ret)
return execWarning(QObject::tr("Failed to add m_shader.frag.", "gl"));
// link shaders
ret = m_shader.program->link();
if (!ret)
return execWarning(QObject::tr("Failed to link simple shader: %1", "gl")
.arg(m_shader.program->log()));
// obtain parameter locations
m_shader.vertexAttrib = m_shader.program->attributeLocation("vertexPosition");
if (m_shader.vertexAttrib == -1)
return execWarning(
QObject::tr("Failed to get attribute location of %1", "gl")
.arg("vertexPosition"));
m_shader.texCoordAttrib = m_shader.program->attributeLocation("texCoord");
if (m_shader.texCoordAttrib == -1)
return execWarning(
QObject::tr("Failed to get attribute location of %1", "gl")
.arg("texCoord"));
m_shader.texUniform = m_shader.program->uniformLocation("tex");
if (m_shader.texUniform == -1)
return execWarning(
QObject::tr("Failed to get uniform location of %1", "gl").arg("tex"));
m_shader.lutUniform = m_shader.program->uniformLocation("lut");
if (m_shader.lutUniform == -1)
return execWarning(
QObject::tr("Failed to get uniform location of %1", "gl").arg("lut"));
m_shader.lutSizeUniform = m_shader.program->uniformLocation("lutSize");
if (m_shader.lutSizeUniform == -1)
return execWarning(QObject::tr("Failed to get uniform location of %1", "gl")
.arg("lutSize"));
return true;
}
//-----------------------------------------------------------------------------
void LutCalibrator::createViewerVBO() {
GLfloat vertex[] = {-1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f};
GLfloat texCoord[] = {0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f};
m_viewerVBO.create();
m_viewerVBO.bind();
m_viewerVBO.allocate(4 * 4 * sizeof(GLfloat));
m_viewerVBO.write(0, vertex, sizeof(vertex));
m_viewerVBO.write(sizeof(vertex), texCoord, sizeof(texCoord));
m_viewerVBO.release();
}
//-----------------------------------------------------------------------------
void LutCalibrator::onEndDraw(QOpenGLFramebufferObject* fbo) {
assert((glGetError()) == GL_NO_ERROR);
fbo->release();
GLuint textureId = fbo->texture();
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, textureId);
glActiveTexture(GL_TEXTURE5);
m_lutTex->bind();
glPushMatrix();
glLoadIdentity();
m_shader.program->bind();
m_shader.program->setUniformValue(m_shader.texUniform,
4); // use texture unit 4
m_shader.program->setUniformValue(m_shader.lutUniform,
5); // use texture unit 5
GLfloat size = (GLfloat)LutManager::instance()->meshSize();
m_shader.program->setUniformValue(m_shader.lutSizeUniform, size, size, size);
m_shader.program->enableAttributeArray(m_shader.vertexAttrib);
m_shader.program->enableAttributeArray(m_shader.texCoordAttrib);
m_viewerVBO.bind();
m_shader.program->setAttributeBuffer(m_shader.vertexAttrib, GL_FLOAT, 0, 2);
m_shader.program->setAttributeBuffer(m_shader.texCoordAttrib, GL_FLOAT,
4 * 2 * sizeof(GLfloat), 2);
m_viewerVBO.release();
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
m_shader.program->disableAttributeArray(m_shader.vertexAttrib);
m_shader.program->disableAttributeArray(m_shader.texCoordAttrib);
m_shader.program->release();
glPopMatrix();
glDisable(GL_TEXTURE_2D);
assert((glGetError()) == GL_NO_ERROR);
}
//-----------------------------------------------------------------------------
void LutCalibrator::assignLutTexture() {
assert(glGetError() == GL_NO_ERROR);
int meshSize = LutManager::instance()->meshSize();
m_lutTex = new QOpenGLTexture(QOpenGLTexture::Target3D);
m_lutTex->setSize(meshSize, meshSize, meshSize);
m_lutTex->setFormat(QOpenGLTexture::RGB32F);
// m_lutTex->setLayers(1);
m_lutTex->setMipLevels(1);
m_lutTex->allocateStorage();
m_lutTex->setMinMagFilters(QOpenGLTexture::Linear, QOpenGLTexture::Linear);
m_lutTex->setWrapMode(QOpenGLTexture::ClampToEdge);
m_lutTex->setData(QOpenGLTexture::RGB, QOpenGLTexture::Float32,
LutManager::instance()->data());
assert(glGetError() == GL_NO_ERROR);
}
//=============================================================================
LutManager* LutManager::instance() {
static LutManager _instance;
return &_instance;
}
//-----------------------------------------------------------------------------
LutManager::LutManager() {
// check whether preference enables color calibration
if (!Preferences::instance()->isColorCalibrationEnabled()) return;
// obtain current monitor name
QString monitorName = getMonitorName();
// obtain 3dlut path associated to the monitor name
QString lutPath =
Preferences::instance()->getColorCalibrationLutPath(monitorName);
if (lutPath.isEmpty()) return;
// check existence of the 3dlut file
// load 3dlut data
if (!loadLutFile(lutPath)) return;
m_isValid = true;
}
//-----------------------------------------------------------------------------
LutManager::~LutManager() {
if (m_lut.data) delete[] m_lut.data;
}
//-----------------------------------------------------------------------------
QString& LutManager::getMonitorName() const {
static QString monitorName;
if (!monitorName.isEmpty()) return monitorName;
#ifdef WIN32
QStringList list = getMonitorNames();
if (list.isEmpty())
monitorName = "Any Monitor"; // this should not be translated
else
monitorName = list.at(0); // for now only the first monitor is handled
#else
monitorName = "Any Monitor"; // this should not be translated
#endif
return monitorName;
}
//-----------------------------------------------------------------------------
bool LutManager::loadLutFile(const QString& fp) {
struct locals {
// skip empty or comment lines
static inline QString readDataLine(QTextStream& stream) {
while (1) {
if (stream.atEnd()) return QString();
QString ret = stream.readLine();
if (!ret.isEmpty() && ret[0] != QChar('#')) return ret;
}
}
static inline int lutCoords(int r, int g, int b, int meshSize) {
return b * meshSize * meshSize * 3 + g * meshSize * 3 + r * 3;
}
};
QFile file(fp);
if (!file.open(QIODevice::ReadOnly | QIODevice::Text))
return execWarning(QObject::tr("Failed to Open 3DLUT File."));
QTextStream stream(&file);
QString line;
//---- read the 3DLUT files
// The first line shoud start from "3DMESH" keyword (case sensitive)
line = locals::readDataLine(stream);
if (line != "3DMESH") {
file.close();
return execWarning(
QObject::tr("Failed to Load 3DLUT File.\nIt should start with "
"\"3DMESH\" keyword."));
}
// The second line is "Mesh [Input bit depth] [Output bit depth]"
// "Mesh" is a keyword (case sensitive)
line = locals::readDataLine(stream);
QStringList list = line.split(" ");
if (list.size() != 3 || list.at(0) != "Mesh") {
file.close();
return execWarning(
QObject::tr("Failed to Load 3DLUT File.\nThe second line should be "
"\"Mesh [Input bit depth] [Output bit depth]\""));
}
int inputBitDepth = list.at(1).toInt();
int outputBitDepth = list.at(2).toInt();
m_lut.meshSize = (int)pow(2.0, inputBitDepth) + 1;
float maxValue = pow(2.0, outputBitDepth) - 1.0f;
// The third line is corrections of values at each LUT grid
line = locals::readDataLine(stream);
list = line.split(" ", QString::SkipEmptyParts);
if (list.size() != m_lut.meshSize) {
file.close();
return execWarning(QObject::tr("Failed to Load 3DLUT File."));
}
m_lut.data = new float[m_lut.meshSize * m_lut.meshSize * m_lut.meshSize * 3];
for (int k = 0; k < m_lut.meshSize; ++k) // r
{
for (int j = 0; j < m_lut.meshSize; ++j) // g
{
for (int i = 0; i < m_lut.meshSize; ++i) // b
{
line = locals::readDataLine(stream);
list = line.split(" ", QString::SkipEmptyParts);
if (list.size() != 3) {
file.close();
delete[] m_lut.data;
return execWarning(QObject::tr("Failed to Load 3DLUT File."));
}
float* lut = m_lut.data + locals::lutCoords(k, j, i, m_lut.meshSize);
*lut = (float)(list.at(0).toInt()) / maxValue;
lut++;
*lut = (float)(list.at(1).toInt()) / maxValue;
lut++;
*lut = (float)(list.at(2).toInt()) / maxValue;
}
}
}
file.close();
return true;
}
//-----------------------------------------------------------------------------
// input : 0-1
void LutManager::convert(float& r, float& g, float& b) {
struct locals {
static inline float lerp(float val1, float val2, float ratio) {
return val1 * (1.0f - ratio) + val2 * ratio;
}
static inline int getCoord(int r, int g, int b, int meshSize) {
return b * meshSize * meshSize * 3 + g * meshSize * 3 + r * 3;
}
};
if (!m_isValid) return;
float ratio[3]; // RGB軸
int index[3][2]; // rgb インデックス
float rawVal[3] = {r, g, b};
float vertex_color[2][2][2][3]; //補間用の1ボクセルの頂点色
for (int c = 0; c < 3; c++) {
float val = rawVal[c] * (float)(m_lut.meshSize - 1);
index[c][0] = (int)val;
// boundary condition: if rawVal == 1 the value will not be interporated
index[c][1] = (rawVal[c] >= 1.0f) ? index[c][0] : index[c][0] + 1;
ratio[c] = val - (float)index[c][0];
}
for (int rr = 0; rr < 2; rr++)
for (int gg = 0; gg < 2; gg++)
for (int bb = 0; bb < 2; bb++) {
float* val = &m_lut.data[locals::getCoord(
index[0][rr], index[1][gg], index[2][bb], m_lut.meshSize)];
for (int chan = 0; chan < 3; chan++, val++)
vertex_color[rr][gg][bb][chan] = *val;
}
float result[3];
for (int chan = 0; chan < 3; chan++) {
result[chan] = locals::lerp(
locals::lerp(locals::lerp(vertex_color[0][0][0][chan],
vertex_color[0][0][1][chan], ratio[2]),
locals::lerp(vertex_color[0][1][0][chan],
vertex_color[0][1][1][chan], ratio[2]),
ratio[1]),
locals::lerp(locals::lerp(vertex_color[1][0][0][chan],
vertex_color[1][0][1][chan], ratio[2]),
locals::lerp(vertex_color[1][1][0][chan],
vertex_color[1][1][1][chan], ratio[2]),
ratio[1]),
ratio[0]);
}
r = result[0];
g = result[1];
b = result[2];
}
//-----------------------------------------------------------------------------
void LutManager::convert(QColor& col) {
if (!m_isValid) return;
float r = col.redF();
float g = col.greenF();
float b = col.blueF();
convert(r, g, b);
// 0.5 offset is necessary for converting to 255 grading
col = QColor((int)(r * 255.0 + 0.5), (int)(g * 255.0 + 0.5),
(int)(b * 255.0 + 0.5), col.alpha());
}
//-----------------------------------------------------------------------------
void LutManager::convert(TPixel32& col) {
if (!m_isValid) return;
float r = (float)col.r / 255.0;
float g = (float)col.g / 255.0;
float b = (float)col.b / 255.0;
convert(r, g, b);
col = TPixel32((int)(r * 255.0 + 0.5), (int)(g * 255.0 + 0.5),
(int)(b * 255.0 + 0.5), col.m);
}