/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#define ASSEMBLER
#include "common.h"
#define STACK 16
#define ARGS 16
#define J 0 + STACK(%esp)
#define I 4 + STACK(%esp)
#define KK 8 + STACK(%esp)
#define KKK 12 + STACK(%esp)
#define M 4 + STACK + ARGS(%esp)
#define N 8 + STACK + ARGS(%esp)
#define K 12 + STACK + ARGS(%esp)
#ifdef DOUBLE
#define ALPHA_R 16 + STACK + ARGS(%esp)
#define ALPHA_I 24 + STACK + ARGS(%esp)
#define STACK_A 32 + STACK + ARGS(%esp)
#define STACK_B 36 + STACK + ARGS(%esp)
#define C 40 + STACK + ARGS(%esp)
#define STACK_LDC 44 + STACK + ARGS(%esp)
#else
#define ALPHA_R 16 + STACK + ARGS(%esp)
#define ALPHA_I 20 + STACK + ARGS(%esp)
#define STACK_A 24 + STACK + ARGS(%esp)
#define STACK_B 28 + STACK + ARGS(%esp)
#define C 32 + STACK + ARGS(%esp)
#define STACK_LDC 36 + STACK + ARGS(%esp)
#endif
#define A %edx
#define B %ecx
#define B_ORIG %ebx
#define LDC %ebp
#define PREFETCHSIZE (5 + 8 * 10)
/*
A hint of scheduling is received from following URL
http://www.netlib.org/atlas/atlas-comm/msg00260.html
Julian's code is still faster than mine, since Athlon has big
defect ... So this is a sample coding and please don't expect too
much.
*/
PROLOGUE
subl $ARGS, %esp # Generate Stack Frame
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx
PROFCODE
#if defined(TRMMKERNEL) && !defined(LEFT)
movl OFFSET, %eax
negl %eax
movl %eax, KK
#endif
movl STACK_B, B_ORIG
movl STACK_LDC, LDC
sall $ZBASE_SHIFT, LDC
subl $-16 * SIZE, B_ORIG
subl $-16 * SIZE, STACK_A
movl M, %eax
testl %eax, %eax
jle .L999
movl N, %eax
testl %eax, %eax
jle .L999
movl K, %eax
testl %eax, %eax
jle .L999
movl N, %eax
sarl $2, %eax
movl %eax, J
je .L20
ALIGN_3
.L11:
#if defined(TRMMKERNEL) && defined(LEFT)
movl OFFSET, %eax
movl %eax, KK
#endif
movl STACK_A, A
movl C, %edi
#if !defined(TRMMKERNEL) || \
(defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \
(defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA))
movl B_ORIG, B
#else
movl KK, %eax
leal (, %eax, SIZE), %eax
leal (B_ORIG, %eax, 4), B
#endif
#ifndef TRMMKERNEL
movl K, %eax
#elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA))
movl K, %eax
subl KK, %eax
movl %eax, KKK
#else
movl KK, %eax
#ifdef LEFT
addl $1, %eax
#else
addl $4, %eax
#endif
movl %eax, KKK
#endif
sarl $4, %eax
jle .L13
ALIGN_4
.L12:
movl -16 * SIZE(B), %esi
movl -8 * SIZE(B), %esi
movl 0 * SIZE(B), %esi
movl 8 * SIZE(B), %esi
movl 16 * SIZE(B), %esi
movl 24 * SIZE(B), %esi
movl 32 * SIZE(B), %esi
movl 40 * SIZE(B), %esi
subl $-64 * SIZE, B
decl %eax
jne .L12
ALIGN_3
.L13:
movl M, %esi
movl %esi, I
ALIGN_3
.L14:
#if !defined(TRMMKERNEL) || \
(defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \
(defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA))
movl B_ORIG, B
#else
movl KK, %eax
leal (, %eax, SIZE), %eax
leal (A, %eax, 1), A
leal (B_ORIG, %eax, 4), B
#endif
leal (%edi, LDC, 2), %eax
fldz
fldz
fldz
fldz
FLD -8 * SIZE(A)
FLD -16 * SIZE(A)
FLD -16 * SIZE(B)
movl $32 * SIZE, %esi
#ifdef HAVE_3DNOW
prefetchw 1 * SIZE(%edi)
prefetchw 2 * SIZE(%edi, LDC)
prefetchw 1 * SIZE(%eax)
prefetchw 2 * SIZE(%eax, LDC)
#elif defined(HAVE_SSE)
prefetcht0 1 * SIZE(%edi)
prefetcht0 1 * SIZE(%edi, LDC)
prefetcht0 1 * SIZE(%eax)
prefetcht0 1 * SIZE(%eax, LDC)
#endif
#ifndef TRMMKERNEL
movl K, %eax
#elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA))
movl K, %eax
subl KK, %eax
movl %eax, KKK
#else
movl KK, %eax
#ifdef LEFT
addl $1, %eax
#else
addl $4, %eax
#endif
movl %eax, KKK
#endif
sarl $3, %eax
je .L16
ALIGN_3
.L15:
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -15 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -14 * SIZE(B)
#if L1_DATA_LINESIZE == 32
#ifdef HAVE_3DNOW
PADDING prefetch (PREFETCHSIZE - 4) * SIZE(A)
#elif defined(HAVE_SSE)
PADDING prefetcht0 (PREFETCHSIZE - 4) * SIZE(A)
#endif
#endif
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -13 * SIZE(B)
faddp %st, %st(5)
FLD -15 * SIZE(A)
FLD -12 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -11 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -10 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -9 * SIZE(B)
faddp %st, %st(5)
FLD -14 * SIZE(A)
FLD -8 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -7 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -6 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -5 * SIZE(B)
faddp %st, %st(5)
FLD -13 * SIZE(A)
FLD -4 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -3 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -2 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -1 * SIZE(B)
faddp %st, %st(5)
FLD -12 * SIZE(A)
FLD 0 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 1 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 2 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 3 * SIZE(B)
faddp %st, %st(5)
FLD -11 * SIZE(A)
FLD 4 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 5 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 6 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 7 * SIZE(B)
faddp %st, %st(5)
FLD -10 * SIZE(A)
FLD 8 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 9 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 10 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 11 * SIZE(B)
faddp %st, %st(5)
FLD -9 * SIZE(A)
FLD 12 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 13 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 15 * SIZE(B)
faddp %st, %st(5)
FLD 0 * SIZE(A)
#ifdef HAVE_3DNOW
PADDING prefetch PREFETCHSIZE * SIZE(A)
#elif defined(HAVE_SSE)
PADDING prefetcht0 PREFETCHSIZE * SIZE(A)
#endif
addl $8 * SIZE, A
fxch %st(1)
addl $32 * SIZE, B
FLD -16 * SIZE(B)
decl %eax
jne .L15
ALIGN_4
.L16:
#ifndef TRMMKERNEL
movl K, %eax
#else
movl KKK, %eax
#endif
and $7, %eax
je .L19
ALIGN_4
.L17:
fmul %st(1), %st
faddp %st, %st(3)
FLD -15 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FLD -14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
FMUL -13 * SIZE(B)
faddp %st, %st(5)
FLD -15 * SIZE(A)
FLD -12 * SIZE(B)
addl $1 * SIZE,A
addl $4 * SIZE,B
decl %eax
jne .L17
ALIGN_4
.L19:
ffreep %st(0)
ffreep %st(0)
ffreep %st(0)
leal (%edi, LDC, 2), %eax
FLD ALPHA_I
FLD ALPHA_R
fld %st(2)
fmul %st(1), %st
FLD 0 * SIZE(%edi)
faddp %st, %st(1)
FST 0 * SIZE(%edi)
fld %st(3)
fmul %st(1), %st
FLD 0 * SIZE(%edi, LDC)
faddp %st, %st(1)
FST 0 * SIZE(%edi, LDC)
fld %st(4)
fmul %st(1), %st
FLD 0 * SIZE(%eax)
faddp %st, %st(1)
FST 0 * SIZE(%eax)
fmul %st(5), %st
FLD 0 * SIZE(%eax, LDC)
faddp %st, %st(1)
FST 0 * SIZE(%eax, LDC)
fmul %st, %st(1)
fmul %st, %st(2)
fmul %st, %st(3)
fmulp %st, %st(4)
FLD 1 * SIZE(%edi)
faddp %st, %st(1)
FST 1 * SIZE(%edi)
FLD 1 * SIZE(%edi, LDC)
faddp %st, %st(1)
FST 1 * SIZE(%edi, LDC)
FLD 1 * SIZE(%eax)
faddp %st, %st(1)
FST 1 * SIZE(%eax)
FLD 1 * SIZE(%eax, LDC)
faddp %st, %st(1)
FST 1 * SIZE(%eax, LDC)
addl $2 * SIZE, %edi
decl I
jne .L14
#if defined(TRMMKERNEL) && !defined(LEFT)
addl $4, KK
#endif
leal (, LDC, 4), %eax
addl %eax, C
movl B, B_ORIG
decl J
jne .L11
ALIGN_4
.L20:
movl N, %eax
andl $2, %eax
je .L30
ALIGN_3
.L21:
#if defined(TRMMKERNEL) && defined(LEFT)
movl OFFSET, %eax
movl %eax, KK
#endif
movl STACK_A, A
movl C, %edi
#if !defined(TRMMKERNEL) || \
(defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \
(defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA))
movl B_ORIG, B
#else
movl KK, %eax
leal (, %eax, SIZE), %eax
leal (B_ORIG, %eax, 2), B
#endif
#ifndef TRMMKERNEL
movl K, %eax
#elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA))
movl K, %eax
subl KK, %eax
movl %eax, KKK
#else
movl KK, %eax
#ifdef LEFT
addl $1, %eax
#else
addl $2, %eax
#endif
movl %eax, KKK
#endif
sarl $4, %eax
jle .L23
ALIGN_4
.L22:
movl -16 * SIZE(B), %esi
movl -8 * SIZE(B), %esi
movl 0 * SIZE(B), %esi
movl 8 * SIZE(B), %esi
subl $-32 * SIZE, B
decl %eax
jne .L22
ALIGN_3
.L23:
movl M, %esi
movl %esi, I
ALIGN_3
.L24:
#if !defined(TRMMKERNEL) || \
(defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \
(defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA))
movl B_ORIG, B
#else
movl KK, %eax
leal (, %eax, SIZE), %eax
leal (A, %eax, 1), A
leal (B_ORIG, %eax, 2), B
#endif
fldz
fldz
fldz
fldz
FLD -16 * SIZE(A)
FLD -16 * SIZE(B)
prefetchw 1 * SIZE(%edi)
prefetchw 1 * SIZE(%edi, LDC)
#ifndef TRMMKERNEL
movl K, %eax
#elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA))
movl K, %eax
subl KK, %eax
movl %eax, KKK
#else
movl KK, %eax
#ifdef LEFT
addl $1, %eax
#else
addl $2, %eax
#endif
movl %eax, KKK
#endif
sarl $3, %eax
je .L26
ALIGN_3
.L25:
fmul %st(1), %st
faddp %st, %st(2)
FMUL -15 * SIZE(B)
faddp %st, %st(2)
FLD -15 * SIZE(A)
FLD -14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -13 * SIZE(B)
faddp %st, %st(4)
FLD -14 * SIZE(A)
FLD -12 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(2)
FMUL -11 * SIZE(B)
faddp %st, %st(2)
FLD -13 * SIZE(A)
FLD -10 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -9 * SIZE(B)
faddp %st, %st(4)
FLD -12 * SIZE(A)
FLD -8 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(2)
FMUL -7 * SIZE(B)
faddp %st, %st(2)
FLD -11 * SIZE(A)
FLD -6 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -5 * SIZE(B)
faddp %st, %st(4)
FLD -10 * SIZE(A)
FLD -4 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(2)
FMUL -3 * SIZE(B)
faddp %st, %st(2)
FLD -9 * SIZE(A)
FLD -2 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -1 * SIZE(B)
faddp %st, %st(4)
FLD -8 * SIZE(A)
FLD 0 * SIZE(B)
addl $ 8 * SIZE, A
subl $-16 * SIZE, B
decl %eax
jne .L25
ALIGN_4
.L26:
#ifndef TRMMKERNEL
movl K, %eax
#else
movl KKK, %eax
#endif
and $7, %eax
je .L29
ALIGN_4
.L27:
fmul %st(1), %st
faddp %st, %st(2)
FMUL -15 * SIZE(B)
faddp %st, %st(2)
FLD -15 * SIZE(A)
FLD -14 * SIZE(B)
addl $1 * SIZE,A
addl $2 * SIZE,B
decl %eax
jne .L27
ALIGN_4
.L29:
ffreep %st(0)
ffreep %st(0)
faddp %st, %st(2)
faddp %st, %st(2)
FLD ALPHA_I
FLD ALPHA_R
fld %st(2)
fmul %st(1), %st
FLD 0 * SIZE(%edi)
faddp %st, %st(1)
FST 0 * SIZE(%edi)
fmul %st(3), %st
FLD 0 * SIZE(%edi, LDC)
faddp %st, %st(1)
FST 0 * SIZE(%edi, LDC)
fmul %st, %st(1)
fmulp %st, %st(2)
FLD 1 * SIZE(%edi)
faddp %st, %st(1)
FST 1 * SIZE(%edi)
FLD 1 * SIZE(%edi, LDC)
faddp %st, %st(1)
FST 1 * SIZE(%edi, LDC)
addl $2 * SIZE, %edi
decl I
jne .L24
#if defined(TRMMKERNEL) && !defined(LEFT)
addl $2, KK
#endif
leal (, LDC, 2), %eax
addl %eax, C
movl B, B_ORIG
ALIGN_4
.L30:
movl N, %eax
andl $1, %eax
je .L999
ALIGN_3
.L31:
#if defined(TRMMKERNEL) && defined(LEFT)
movl OFFSET, %eax
movl %eax, KK
#endif
movl STACK_A, A
movl C, %edi
#if !defined(TRMMKERNEL) || \
(defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \
(defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA))
movl B_ORIG, B
#else
movl KK, %eax
leal (, %eax, SIZE), %eax
leal (B_ORIG, %eax, 1), B
#endif
#ifndef TRMMKERNEL
movl K, %eax
#elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA))
movl K, %eax
subl KK, %eax
movl %eax, KKK
#else
movl KK, %eax
#ifdef LEFT
addl $1, %eax
#else
addl $1, %eax
#endif
movl %eax, KKK
#endif
sarl $5, %eax
jle .L33
ALIGN_4
.L32:
movl -16 * SIZE(B), %esi
movl -8 * SIZE(B), %esi
movl 0 * SIZE(B), %esi
movl 8 * SIZE(B), %esi
subl $-32 * SIZE, B
decl %eax
jne .L32
ALIGN_3
.L33:
movl M, %esi
movl %esi, I
ALIGN_3
.L34:
#if !defined(TRMMKERNEL) || \
(defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \
(defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA))
movl B_ORIG, B
#else
movl KK, %eax
leal (, %eax, SIZE), %eax
leal (A, %eax, 1), A
leal (B_ORIG, %eax, 1), B
#endif
fldz
fldz
fldz
fldz
prefetchw 1 * SIZE(%edi)
#ifndef TRMMKERNEL
movl K, %eax
#elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA))
movl K, %eax
subl KK, %eax
movl %eax, KKK
#else
movl KK, %eax
#ifdef LEFT
addl $1, %eax
#else
addl $1, %eax
#endif
movl %eax, KKK
#endif
sarl $3, %eax
je .L36
ALIGN_3
.L35:
FLD -16 * SIZE(A)
FMUL -16 * SIZE(B)
faddp %st, %st(1)
FLD -15 * SIZE(A)
FMUL -15 * SIZE(B)
faddp %st, %st(2)
FLD -14 * SIZE(A)
FMUL -14 * SIZE(B)
faddp %st, %st(3)
FLD -13 * SIZE(A)
FMUL -13 * SIZE(B)
faddp %st, %st(4)
FLD -12 * SIZE(A)
FMUL -12 * SIZE(B)
faddp %st, %st(1)
FLD -11 * SIZE(A)
FMUL -11 * SIZE(B)
faddp %st, %st(2)
FLD -10 * SIZE(A)
FMUL -10 * SIZE(B)
faddp %st, %st(3)
FLD -9 * SIZE(A)
FMUL -9 * SIZE(B)
faddp %st, %st(4)
addl $8 * SIZE, A
addl $8 * SIZE, B
decl %eax
jne .L35
ALIGN_4
.L36:
#ifndef TRMMKERNEL
movl K, %eax
#else
movl KKK, %eax
#endif
and $7, %eax
je .L39
ALIGN_4
.L37:
FLD -16 * SIZE(A)
FMUL -16 * SIZE(B)
faddp %st, %st(1)
addl $1 * SIZE,A
addl $1 * SIZE,B
decl %eax
jne .L37
ALIGN_4
.L39:
faddp %st, %st(2)
faddp %st, %st(2)
faddp %st, %st(1)
FLD ALPHA_I
FLD ALPHA_R
fmul %st(2), %st
FLD 0 * SIZE(%edi)
faddp %st, %st(1)
FST 0 * SIZE(%edi)
fmulp %st, %st(1)
FLD 1 * SIZE(%edi)
faddp %st, %st(1)
FST 1 * SIZE(%edi)
addl $2 * SIZE, %edi
decl I
jne .L34
#if defined(TRMMKERNEL) && !defined(LEFT)
addl $1, KK
#endif
addl LDC, C
movl B, B_ORIG
ALIGN_4
.L999:
popl %ebx
popl %esi
popl %edi
popl %ebp
addl $ARGS, %esp
ret
EPILOGUE