Blob Blame Raw


#include "tcurveutil.h"
#include "tcurves.h"
#include "tmathutil.h"
#include "tbezier.h"

//=============================================================================

/*
Questa funzione ritorna un vettore di
coppie di double (DoublePair) che individua i parametri
dei punti d'intersezione.

  L'intero restituito indica il numero d'intersezioni che
  sono state individuate (per due segmenti una).

    Se i segmenti sono paralleli il parametro viene posto a -1.
*/

int intersect(const TSegment &first, const TSegment &second,
              std::vector<DoublePair> &intersections) {
  return intersect(first.getP0(), first.getP1(), second.getP0(), second.getP1(),
                   intersections);
}

int intersect(const TPointD &p1, const TPointD &p2, const TPointD &p3,
              const TPointD &p4, std::vector<DoublePair> &intersections) {
  // This algorithm is presented in Graphics Geems III pag 199

  static double Ax, Bx, Ay, By, Cx, Cy, d, f, e;
  static double x1lo, x1hi, y1lo, y1hi;

  Ax = p2.x - p1.x;
  Bx = p3.x - p4.x;

  // test delle BBox
  if (Ax < 0.0) {
    x1lo = p2.x;
    x1hi = p1.x;
  } else {
    x1lo = p1.x;
    x1hi = p2.x;
  }

  if (Bx > 0.0) {
    if (x1hi < p4.x || x1lo > p3.x) return 0;
  } else if (x1hi < p3.x || x1lo > p4.x)
    return 0;

  Ay = p2.y - p1.y;
  By = p3.y - p4.y;

  if (Ay < 0) {
    y1lo = p2.y;
    y1hi = p1.y;
  } else {
    y1lo = p1.y;
    y1hi = p2.y;
  }

  if (By > 0) {
    if (y1hi < p4.y || y1lo > p3.y) return 0;
  } else if (y1hi < p3.y || y1lo > p4.y)
    return 0;

  Cx = p1.x - p3.x;
  Cy = p1.y - p3.y;

  d = By * Cx - Bx * Cy;
  f = Ay * Bx - Ax * By;
  e = Ax * Cy - Ay * Cx;

  if (f > 0) {
    if (d < 0) return 0;

    if (!areAlmostEqual(d, f))
      if (d > f) return 0;

    if (e < 0) return 0;
    if (!areAlmostEqual(e, f))
      if (e > f) return 0;
  } else if (f < 0) {
    if (d > 0) return 0;

    if (!areAlmostEqual(d, f))
      if (d < f) return 0;

    if (e > 0) return 0;
    if (!areAlmostEqual(e, f))
      if (e < f) return 0;
  } else {
    if (d < 0 || d > 1 || e < 0 || e > 1) return 0;

    if (p1 == p2 && p3 == p4) {
      intersections.push_back(DoublePair(0, 0));
      return 1;
    }

    // controllo che i segmenti non siano sulla stessa retta
    if (!cross(p2 - p1, p4 - p1)) {
      // calcolo delle combinazioni baricentriche
      double distp2p1 = norm2(p2 - p1);
      double distp3p4 = norm2(p3 - p4);

      double dist2_p3p1 = norm2(p3 - p1);
      double dist2_p4p1 = norm2(p4 - p1);
      double dist2_p3p2 = norm2(p3 - p2);
      double dist2_p4p2 = norm2(p4 - p2);

      int intersection = 0;

      // calcolo delle prime due soluzioni
      double vol1;

      if (distp3p4) {
        distp3p4 = sqrt(distp3p4);

        vol1 = (p1 - p3) * normalize(p4 - p3);

        if (vol1 >= 0 && vol1 <= distp3p4)  // combinazione baricentrica valida
        {
          intersections.push_back(DoublePair(0.0, vol1 / distp3p4));
          ++intersection;
        }

        vol1 = (p2 - p3) * normalize(p4 - p3);

        if (vol1 >= 0 && vol1 <= distp3p4) {
          intersections.push_back(DoublePair(1.0, vol1 / distp3p4));
          ++intersection;
        }
      }

      if (distp2p1) {
        distp2p1 = sqrt(distp2p1);

        vol1 = (p3 - p1) * normalize(p2 - p1);

        if (dist2_p3p2 && dist2_p3p1)
          if (vol1 >= 0 && vol1 <= distp2p1) {
            intersections.push_back(DoublePair(vol1 / distp2p1, 0.0));
            ++intersection;
          }

        vol1 = (p4 - p1) * normalize(p2 - p1);

        if (dist2_p4p2 && dist2_p4p1)
          if (vol1 >= 0 && vol1 <= distp2p1) {
            intersections.push_back(DoublePair(vol1 / distp2p1, 1.0));
            ++intersection;
          }
      }
      return intersection;
    }
    return -1;
  }

  double par_s = d / f;
  double par_t = e / f;

  intersections.push_back(DoublePair(par_s, par_t));
  return 1;
}

//------------------------------------------------------------------------------------------------------------
int intersectCloseControlPoints(const TQuadratic &c0, const TQuadratic &c1,
                                std::vector<DoublePair> &intersections);

int intersect(const TQuadratic &c0, const TQuadratic &c1,
              std::vector<DoublePair> &intersections, bool checksegments) {
  int ret;

  // funziona male, a volte toppa le intersezioni...
  if (checksegments) {
    ret = intersectCloseControlPoints(c0, c1, intersections);
    if (ret != -2) return ret;
  }

  double a = c0.getP0().x - 2 * c0.getP1().x + c0.getP2().x;
  double b = 2 * (c0.getP1().x - c0.getP0().x);
  double d = c0.getP0().y - 2 * c0.getP1().y + c0.getP2().y;
  double e = 2 * (c0.getP1().y - c0.getP0().y);

  double coeff = b * d - a * e;
  int i        = 0;

  if (areAlmostEqual(coeff, 0.0))  // c0 is a Segment, or a single point!!!
  {
    TSegment s = TSegment(c0.getP0(), c0.getP2());
    ret        = intersect(s, c1, intersections);
    if (a == 0 && d == 0)  // values of t in s coincide with values of t in c0
      return ret;

    for (i = intersections.size() - ret; i < (int)intersections.size(); i++) {
      intersections[i].first = c0.getT(s.getPoint(intersections[i].first));
    }
    return ret;
  }

  double c = c0.getP0().x;
  double f = c0.getP0().y;

  double g = c1.getP0().x - 2 * c1.getP1().x + c1.getP2().x;
  double h = 2 * (c1.getP1().x - c1.getP0().x);
  double k = c1.getP0().x;

  double m = c1.getP0().y - 2 * c1.getP1().y + c1.getP2().y;
  double p = 2 * (c1.getP1().y - c1.getP0().y);
  double q = c1.getP0().y;

  if (areAlmostEqual(h * m - g * p,
                     0.0))  // c1 is a Segment, or a single point!!!
  {
    TSegment s = TSegment(c1.getP0(), c1.getP2());
    ret        = intersect(c0, s, intersections);
    if (g == 0 && m == 0)  // values of t in s coincide with values of t in c0
      return ret;

    for (i = intersections.size() - ret; i < (int)intersections.size(); i++) {
      intersections[i].second = c1.getT(s.getPoint(intersections[i].second));
    }
    return ret;
  }

  double a2 = (g * d - a * m);
  double b2 = (h * d - a * p);
  double c2 = ((k - c) * d + (f - q) * a);

  coeff = 1.0 / coeff;

  double A   = (a * a + d * d) * coeff * coeff;
  double aux = A * c2 + (a * b + d * e) * coeff;

  std::vector<double> t;
  std::vector<double> solutions;

  t.push_back(aux * c2 + a * c + d * f - k * a - d * q);
  aux += A * c2;
  t.push_back(aux * b2 - h * a - d * p);
  t.push_back(aux * a2 + A * b2 * b2 - g * a - d * m);
  t.push_back(2 * A * a2 * b2);
  t.push_back(A * a2 * a2);

  rootFinding(t, solutions);
  //  solutions.push_back(0.0); //per convenzione; un valore vale l'altro....

  for (i = 0; i < (int)solutions.size(); i++) {
    if (solutions[i] < 0) {
      if (areAlmostEqual(solutions[i], 0, 1e-6))
        solutions[i] = 0;
      else
        continue;
    } else if (solutions[i] > 1) {
      if (areAlmostEqual(solutions[i], 1, 1e-6))
        solutions[i] = 1;
      else
        continue;
    }

    DoublePair tt;
    tt.second = solutions[i];
    tt.first  = coeff * (tt.second * (a2 * tt.second + b2) + c2);
    if (tt.first < 0) {
      if (areAlmostEqual(tt.first, 0, 1e-6))
        tt.first = 0;
      else
        continue;
    } else if (tt.first > 1) {
      if (areAlmostEqual(tt.first, 1, 1e-6))
        tt.first = 1;
      else
        continue;
    }

    intersections.push_back(tt);

    assert(areAlmostEqual(c0.getPoint(tt.first), c1.getPoint(tt.second), 1e-1));
  }
  return intersections.size();
}

//=============================================================================
// questa funzione verifica se il punto di controllo p1 e' molto vicino a p0 o a
// p2:
// in tal caso, si approssima la quadratica al segmento p0-p2.
// se p1 e' vicino a p0, la relazione che lega il t del segmento al t della
// quadratica originaria e' tq = sqrt(ts),
// se p1 e' vicino a p2, invece e' tq = 1-sqrt(1-ts).

int intersectCloseControlPoints(const TQuadratic &c0, const TQuadratic &c1,
                                std::vector<DoublePair> &intersections) {
  int ret = -2;

  double dist1          = tdistance2(c0.getP0(), c0.getP1());
  if (dist1 == 0) dist1 = 1e-20;
  double dist2          = tdistance2(c0.getP1(), c0.getP2());
  if (dist2 == 0) dist2 = 1e-20;
  double val0           = std::max(dist1, dist2) / std::min(dist1, dist2);
  double dist3          = tdistance2(c1.getP0(), c1.getP1());
  if (dist3 == 0) dist3 = 1e-20;
  double dist4          = tdistance2(c1.getP1(), c1.getP2());
  if (dist4 == 0) dist4 = 1e-20;
  double val1           = std::max(dist3, dist4) / std::min(dist3, dist4);

  if (val0 > 1000000 &&
      val1 > 1000000)  // entrambe c0 e c1  approssimate a segmenti
  {
    TSegment s0 = TSegment(c0.getP0(), c0.getP2());
    TSegment s1 = TSegment(c1.getP0(), c1.getP2());
    ret         = intersect(s0, s1, intersections);
    for (UINT i = intersections.size() - ret; i < (int)intersections.size();
         i++) {
      intersections[i].first = (dist1 < dist2)
                                   ? sqrt(intersections[i].first)
                                   : 1 - sqrt(1 - intersections[i].first);
      intersections[i].second = (dist3 < dist4)
                                    ? sqrt(intersections[i].second)
                                    : 1 - sqrt(1 - intersections[i].second);
    }
    // return ret;
  } else if (val0 > 1000000)  // solo c0 approssimata  a segmento
  {
    TSegment s0 = TSegment(c0.getP0(), c0.getP2());
    ret         = intersect(s0, c1, intersections);
    for (UINT i = intersections.size() - ret; i < (int)intersections.size();
         i++)
      intersections[i].first = (dist1 < dist2)
                                   ? sqrt(intersections[i].first)
                                   : 1 - sqrt(1 - intersections[i].first);
    // return ret;
  } else if (val1 > 1000000)  // solo c1 approssimata  a segmento
  {
    TSegment s1 = TSegment(c1.getP0(), c1.getP2());
    ret         = intersect(c0, s1, intersections);
    for (UINT i = intersections.size() - ret; i < (int)intersections.size();
         i++)
      intersections[i].second = (dist3 < dist4)
                                    ? sqrt(intersections[i].second)
                                    : 1 - sqrt(1 - intersections[i].second);
    // return ret;
  }

  /*
if (ret!=-2)
{
std::vector<DoublePair> intersections1;
int ret1 = intersect(c0, c1, intersections1, false);
if (ret1>ret)
{
intersections = intersections1;
return ret1;
}
}
*/

  return ret;
}

//=============================================================================

int intersect(const TQuadratic &q, const TSegment &s,
              std::vector<DoublePair> &intersections, bool firstIsQuad) {
  int solutionNumber = 0;

  // nota la retta a*x+b*y+c = 0 andiamo alla ricerca delle soluzioni
  //  di a*x(t)+b*y(t)+c=0 in [0,1]
  double a = s.getP0().y - s.getP1().y, b = s.getP1().x - s.getP0().x,
         c = -(a * s.getP0().x + b * s.getP0().y);

  // se il segmento e' un punto
  if (0.0 == a && 0.0 == b) {
    double outParForQuad = q.getT(s.getP0());

    if (areAlmostEqual(q.getPoint(outParForQuad), s.getP0())) {
      if (firstIsQuad)
        intersections.push_back(DoublePair(outParForQuad, 0));
      else
        intersections.push_back(DoublePair(0, outParForQuad));
      return 1;
    }
    return 0;
  }

  if (q.getP2() - q.getP1() ==
      q.getP1() - q.getP0()) {  // pure il secondo e' unsegmento....
    if (firstIsQuad)
      return intersect(TSegment(q.getP0(), q.getP2()), s, intersections);
    else
      return intersect(s, TSegment(q.getP0(), q.getP2()), intersections);
  }

  std::vector<TPointD> bez, pol;
  bez.push_back(q.getP0());
  bez.push_back(q.getP1());
  bez.push_back(q.getP2());

  bezier2poly(bez, pol);

  std::vector<double> poly_1(3, 0), sol;

  poly_1[0] = a * pol[0].x + b * pol[0].y + c;
  poly_1[1] = a * pol[1].x + b * pol[1].y;
  poly_1[2] = a * pol[2].x + b * pol[2].y;

  if (!(rootFinding(poly_1, sol))) return 0;

  double segmentPar, solution;

  TPointD v10(s.getP1() - s.getP0());
  for (UINT i = 0; i < sol.size(); ++i) {
    solution = sol[i];
    if ((0.0 <= solution && solution <= 1.0) ||
        areAlmostEqual(solution, 0.0, 1e-6) ||
        areAlmostEqual(solution, 1.0, 1e-6)) {
      segmentPar = (q.getPoint(solution) - s.getP0()) * v10 / (v10 * v10);
      if ((0.0 <= segmentPar && segmentPar <= 1.0) ||
          areAlmostEqual(segmentPar, 0.0, 1e-6) ||
          areAlmostEqual(segmentPar, 1.0, 1e-6)) {
        TPointD p1 = q.getPoint(solution);
        TPointD p2 = s.getPoint(segmentPar);
        assert(areAlmostEqual(p1, p2, 1e-1));

        if (firstIsQuad)
          intersections.push_back(DoublePair(solution, segmentPar));
        else
          intersections.push_back(DoublePair(segmentPar, solution));
        solutionNumber++;
      }
    }
  }

  return solutionNumber;
}

//=============================================================================

bool isCloseToSegment(const TPointD &point, const TSegment &segment,
                      double distance) {
  TPointD a      = segment.getP0();
  TPointD b      = segment.getP1();
  double length2 = tdistance2(a, b);
  if (length2 < tdistance2(a, point) || length2 < tdistance2(point, b))
    return false;
  if (a.x == b.x) return fabs(point.x - a.x) <= distance;
  if (a.y == b.y) return fabs(point.y - a.y) <= distance;

  // y=mx+q
  double m = (a.y - b.y) / (a.x - b.x);
  double q = a.y - (m * a.x);

  double d2 = pow(fabs(point.y - (m * point.x) - q), 2) / (1 + (m * m));
  return d2 <= distance * distance;
}

//=============================================================================

double tdistance(const TSegment &segment, const TPointD &point) {
  TPointD v1 = segment.getP1() - segment.getP0();
  TPointD v2 = point - segment.getP0();
  TPointD v3 = point - segment.getP1();

  if (v2 * v1 <= 0)
    return tdistance(point, segment.getP0());
  else if (v3 * v1 >= 0)
    return tdistance(point, segment.getP1());

  return fabs(v2 * rotate90(normalize(v1)));
}

//-----------------------------------------------------------------------------
/*
This formule is derived from Graphic Gems pag. 600

  e = h^2 |a|/8

    e = pixel size
    h = step
    a = acceleration of curve (for a quadratic is a costant value)
*/

double computeStep(const TQuadratic &quad, double pixelSize) {
  double step = 2;

  TPointD A = quad.getP0() - 2.0 * quad.getP1() +
              quad.getP2();  // 2*A is the acceleration of the curve

  double A_len = norm(A);

  /*
A_len is equal to 2*norm(a)
pixelSize will be 0.5*pixelSize
now h is equal to sqrt( 8 * 0.5 * pixelSize / (2*norm(a)) ) = sqrt(2) * sqrt(
pixelSize/A_len )
*/

  if (A_len > 0) step = sqrt(2 * pixelSize / A_len);

  return step;
}

//-----------------------------------------------------------------------------

double computeStep(const TThickQuadratic &quad, double pixelSize) {
  TThickPoint cp0 = quad.getThickP0(), cp1 = quad.getThickP1(),
              cp2 = quad.getThickP2();

  TQuadratic q1(TPointD(cp0.x, cp0.y), TPointD(cp1.x, cp1.y),
                TPointD(cp2.x, cp2.y)),
      q2(TPointD(cp0.y, cp0.thick), TPointD(cp1.y, cp1.thick),
         TPointD(cp2.y, cp2.thick)),
      q3(TPointD(cp0.x, cp0.thick), TPointD(cp1.x, cp1.thick),
         TPointD(cp2.x, cp2.thick));

  return std::min({computeStep(q1, pixelSize), computeStep(q2, pixelSize),
                   computeStep(q3, pixelSize)});
}

//=============================================================================

/*
  Explanation: The length of a Bezier quadratic can be calculated explicitly.

  Let Q be the quadratic. The tricks to explicitly integrate | Q'(t) | are:

    - The integrand can be reformulated as:  | Q'(t) | = sqrt(at^2 + bt + c);
    - Complete the square beneath the sqrt (add/subtract sq(b) / 4a)
      and perform a linear variable change. We reduce the integrand to:
  sqrt(kx^2 + k),
      where k can be taken outside => sqrt(x^2 + 1)
    - Use x = tan y. The integrand will yield sec^3 y.
    - Integrate by parts. In short, the resulting primitive of sqrt(x^2 + 1) is:

        F(x) = ( x * sqrt(x^2 + 1) + log(x + sqrt(x^2 + 1)) ) / 2;
*/

void TQuadraticLengthEvaluator::setQuad(const TQuadratic &quad) {
  const TPointD &p0 = quad.getP0();
  const TPointD &p1 = quad.getP1();
  const TPointD &p2 = quad.getP2();

  TPointD speed0(2.0 * (p1 - p0));
  TPointD accel(2.0 * (p2 - p1) - speed0);

  double a = accel * accel;
  double b = 2.0 * accel * speed0;
  m_c      = speed0 * speed0;

  m_constantSpeed = isAlmostZero(a);  // => b isAlmostZero, too
  if (m_constantSpeed) {
    m_c = sqrt(m_c);
    return;
  }

  m_sqrt_a_div_2 = 0.5 * sqrt(a);

  m_noSpeed0 = isAlmostZero(m_c);  // => b isAlmostZero, too
  if (m_noSpeed0) return;

  m_tRef   = 0.5 * b / a;
  double d = m_c - 0.5 * b * m_tRef;

  m_squareIntegrand = (d < TConsts::epsilon);
  if (m_squareIntegrand) {
    m_f = (b > 0) ? -sq(m_tRef) : sq(m_tRef);
    return;
  }

  m_e = d / a;

  double sqrt_part = sqrt(sq(m_tRef) + m_e);
  double log_arg   = m_tRef + sqrt_part;

  m_squareIntegrand = (log_arg < TConsts::epsilon);
  if (m_squareIntegrand) {
    m_f = (b > 0) ? -sq(m_tRef) : sq(m_tRef);
    return;
  }

  m_primitive_0 = m_sqrt_a_div_2 * (m_tRef * sqrt_part + m_e * log(log_arg));
}

//-----------------------------------------------------------------------------

double TQuadraticLengthEvaluator::getLengthAt(double t) const {
  if (m_constantSpeed) return m_c * t;

  if (m_noSpeed0) return m_sqrt_a_div_2 * sq(t);

  if (m_squareIntegrand) {
    double t_plus_tRef = t + m_tRef;
    return m_sqrt_a_div_2 *
           (m_f + ((t_plus_tRef > 0) ? sq(t_plus_tRef) : -sq(t_plus_tRef)));
  }

  double y         = t + m_tRef;
  double sqrt_part = sqrt(sq(y) + m_e);
  double log_arg =
      y + sqrt_part;  // NOTE: log_arg >= log_arg0 >= TConsts::epsilon

  return m_sqrt_a_div_2 * (y * sqrt_part + m_e * log(log_arg)) - m_primitive_0;
}

//-----------------------------------------------------------------------------
//  End Of File
//-----------------------------------------------------------------------------