#include "iwa_rainbowfx.h"
#include "iwa_cie_d65.h"
#include "iwa_xyz.h"
#include "iwa_rainbow_intensity.h"
#include "tparamuiconcept.h"
#include "trop.h"
//--------------------------------------------------------------
double Iwa_RainbowFx::getSizePixelAmount(const double val,
const TAffine affine) {
/*--- Convert to vector --- */
TPointD vect;
vect.x = val;
vect.y = 0.0;
/*--- Apply geometrical transformation ---*/
// For the following lines I referred to lines 586-592 of
// sources/stdfx/motionblurfx.cpp
TAffine aff(affine);
aff.a13 = aff.a23 = 0; /* ignore translation */
vect = aff * vect;
/*--- return the length of the vector ---*/
return sqrt(vect.x * vect.x + vect.y * vect.y);
}
//------------------------------------------------------------
void Iwa_RainbowFx::buildRainbowColorMap(double3* core, double3* wide,
double intensity, double inside,
double secondary, bool doClamp) {
auto clamp01 = [](double val) { return std::min(1.0, std::max(0.0, val)); };
int mapSize[2] = {301, 91};
// secondary rainbow : gradually darken from 133 to 136 degrees
double secondary_grad_range[2] = {133, 136};
// supernumerary rainbow inside the primary rainbow : gradually darken from
// 139.75 to 139.2 degrees
double inside_grad_width = 0.57;
double inside_grad_start[2] = {139.75, 139.2};
for (int m = 0; m < 2; m++) {
double3* out_p = (m == 0) ? core : wide;
double xyz_sum[3];
for (int a = 0; a < mapSize[m]; a++, out_p++) {
double angle = (m == 0) ? 120.0 + (double)a * 0.1 : 90.0 + (double)a;
double second_ratio = 1.0;
if (angle <= secondary_grad_range[0]) {
second_ratio = secondary;
} else if (angle < secondary_grad_range[1]) {
double r = (angle - (double)secondary_grad_range[0]) /
(double)(secondary_grad_range[1] - secondary_grad_range[0]);
second_ratio = (1.0 - r) * secondary + r;
}
xyz_sum[0] = 0.0;
xyz_sum[1] = 0.0;
xyz_sum[2] = 0.0;
// sum for each wavelength (in the range of visible light, 380nm-710nm)
for (int ram = 0; ram < 34; ram++) {
double start =
inside_grad_start[0] +
(inside_grad_start[1] - inside_grad_start[0]) * (double)ram / 33.0;
double end = start + inside_grad_width;
double inside_ratio = 1.0;
if (angle >= end) {
inside_ratio = inside;
} else if (angle > start) {
double r = (angle - start) / inside_grad_width;
inside_ratio = (1.0 - r) + r * inside;
}
double* data =
(m == 0) ? &rainbow_core_data[a][0] : &rainbow_wide_data[a][0];
// accumulate XYZ channel values
for (int c = 0; c < 3; c++)
xyz_sum[c] +=
cie_d65[ram] * data[ram] * xyz[ram * 3 + c] * inside_ratio;
}
double tmp_intensity = intensity * 25000.0 * second_ratio;
out_p->r = (3.240479 * xyz_sum[0] - 1.537150 * xyz_sum[1] -
0.498535 * xyz_sum[2]) *
tmp_intensity;
out_p->g = (-0.969256 * xyz_sum[0] + 1.875992 * xyz_sum[1] +
0.041556 * xyz_sum[2]) *
tmp_intensity;
out_p->b = (0.055648 * xyz_sum[0] - 0.204043 * xyz_sum[1] +
1.057311f * xyz_sum[2]) *
tmp_intensity;
if (doClamp) {
out_p->r = clamp01(out_p->r);
out_p->g = clamp01(out_p->g);
out_p->b = clamp01(out_p->b);
}
}
}
}
//------------------------------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_RainbowFx::setOutputRaster(const RASTER ras, TDimensionI dim,
double3* outBuf_p) {
bool withAlpha = m_alpha_rendering->getValue();
double maxi = static_cast<double>(PIXEL::maxChannelValue); // 255or65535
double3* out_p = outBuf_p;
for (int j = 0; j < dim.ly; j++) {
PIXEL* pix = ras->pixels(j);
for (int i = 0; i < dim.lx; i++, out_p++, pix++) {
pix->r = (typename PIXEL::Channel)(out_p->r * (maxi + 0.999999));
pix->g = (typename PIXEL::Channel)(out_p->g * (maxi + 0.999999));
pix->b = (typename PIXEL::Channel)(out_p->b * (maxi + 0.999999));
if (withAlpha) {
double chan_a = std::max(std::max(out_p->r, out_p->g), out_p->b);
pix->m = (typename PIXEL::Channel)(chan_a * (maxi + 0.999999));
} else
pix->m = (typename PIXEL::Channel)(PIXEL::maxChannelValue);
}
}
}
template <>
void Iwa_RainbowFx::setOutputRaster<TRasterFP, TPixelF>(const TRasterFP ras,
TDimensionI dim,
double3* outBuf_p) {
bool withAlpha = m_alpha_rendering->getValue();
double3* out_p = outBuf_p;
for (int j = 0; j < dim.ly; j++) {
TPixelF* pix = ras->pixels(j);
for (int i = 0; i < dim.lx; i++, out_p++, pix++) {
pix->r = (float)(out_p->r);
pix->g = (float)(out_p->g);
pix->b = (float)(out_p->b);
if (withAlpha)
pix->m = std::max(std::max(pix->r, pix->g), pix->b);
else
pix->m = 1.f;
}
}
}
//------------------------------------------------------------
Iwa_RainbowFx::Iwa_RainbowFx()
: m_center(TPointD(0.0, 0.0))
, m_radius(200.0)
, m_intensity(1.0)
, m_width_scale(1.0)
, m_inside(1.0)
, m_secondary_rainbow(1.0)
, m_alpha_rendering(false) {
// Fx Version 1: *2.2 Gamma when linear rendering (it duplicately applies
// gamma and is not correct) Fx Version 2: *1/2.2 Gamma when non-linear
// rendering
setFxVersion(2);
bindParam(this, "center", m_center);
bindParam(this, "radius", m_radius);
bindParam(this, "intensity", m_intensity);
bindParam(this, "width_scale", m_width_scale);
bindParam(this, "inside", m_inside);
bindParam(this, "secondary_rainbow", m_secondary_rainbow);
bindParam(this, "alpha_rendering", m_alpha_rendering);
m_radius->setValueRange(0.0, std::numeric_limits<double>::max());
m_intensity->setValueRange(0.1, 10.0);
m_inside->setValueRange(0.0, 1.0);
m_secondary_rainbow->setValueRange(0.0, 10.0);
m_width_scale->setValueRange(0.1, 50.0);
enableComputeInFloat(true);
}
//------------------------------------------------------------
bool Iwa_RainbowFx::doGetBBox(double frame, TRectD& bBox,
const TRenderSettings& ri) {
bBox = TConsts::infiniteRectD;
return true;
}
//------------------------------------------------------------
inline double3 Iwa_RainbowFx::angleToColor(double angle, double3* core,
double3* wide) {
// boundary conditions
if (angle <= 90.0)
return wide[0];
else if (angle >= 180.0)
return wide[90];
// inside of the range of hi-res color table
if (angle > 120.0 && angle < 150.0) {
double tablePos = (angle - 120) / 0.1;
int tableId = (int)std::floor(tablePos);
double ratio = tablePos - (double)tableId;
return {core[tableId].r * (1.0 - ratio) + core[tableId + 1].r * ratio,
core[tableId].g * (1.0 - ratio) + core[tableId + 1].g * ratio,
core[tableId].b * (1.0 - ratio) + core[tableId + 1].b * ratio};
}
// low-res color table
double tablePos = (angle - 90) / 1.0;
int tableId = (int)std::floor(tablePos);
double ratio = tablePos - (double)tableId;
return {wide[tableId].r * (1.0 - ratio) + wide[tableId + 1].r * ratio,
wide[tableId].g * (1.0 - ratio) + wide[tableId + 1].g * ratio,
wide[tableId].b * (1.0 - ratio) + wide[tableId + 1].b * ratio};
}
//------------------------------------------------------------
void Iwa_RainbowFx::doCompute(TTile& tile, double frame,
const TRenderSettings& ri) {
// build raibow color map
TRasterGR8P rainbowColorCore_ras(sizeof(double3) * 301, 1);
rainbowColorCore_ras->lock();
double3* rainbowColorCore_p = (double3*)rainbowColorCore_ras->getRawData();
TRasterGR8P rainbowColorWide_ras(sizeof(double3) * 91, 1);
rainbowColorWide_ras->lock();
double3* rainbowColorWide_p = (double3*)rainbowColorWide_ras->getRawData();
double intensity = m_intensity->getValue(frame);
double inside = m_inside->getValue(frame);
double secondary = m_secondary_rainbow->getValue(frame);
bool doClamp = (tile.getRaster()->getPixelSize() != 16);
buildRainbowColorMap(rainbowColorCore_p, rainbowColorWide_p, intensity,
inside, secondary, doClamp);
// convert center position to render region coordinate
TAffine aff = ri.m_affine;
TDimensionI dimOut(tile.getRaster()->getLx(), tile.getRaster()->getLy());
TPointD dimOffset((float)dimOut.lx / 2.0f, (float)dimOut.ly / 2.0f);
TPointD centerPos = m_center->getValue(frame);
centerPos = aff * centerPos - (tile.m_pos + tile.getRaster()->getCenterD()) +
dimOffset;
// result image buffer
TRasterGR8P outBuf_ras(sizeof(double3) * dimOut.lx * dimOut.ly, 1);
outBuf_ras->lock();
double3* outBuf_p = (double3*)outBuf_ras->getRawData();
double theta_peak = 41.3;
double peakRadius =
getSizePixelAmount(m_radius->getValue(frame), ri.m_affine);
double anglePerPixel = theta_peak / peakRadius;
double widthScale = m_width_scale->getValue(frame);
double3* out_p = outBuf_p;
// loop for all pixels
for (int y = 0; y < dimOut.ly; y++) {
for (int x = 0; x < dimOut.lx; x++, out_p++) {
// convert pixel distance from the center to scattering angle (degrees)
double s = x - centerPos.x;
double t = y - centerPos.y;
double theta = std::sqrt(s * s + t * t) * anglePerPixel;
double phi = 180.0 - theta_peak + (theta_peak - theta) / widthScale;
*out_p = angleToColor(phi, rainbowColorCore_p, rainbowColorWide_p);
}
}
rainbowColorCore_ras->unlock();
rainbowColorWide_ras->unlock();
// convert to channel values
tile.getRaster()->clear();
TRaster32P outRas32 = (TRaster32P)tile.getRaster();
TRaster64P outRas64 = (TRaster64P)tile.getRaster();
TRasterFP outRasF = (TRasterFP)tile.getRaster();
if (outRas32)
setOutputRaster<TRaster32P, TPixel32>(outRas32, dimOut, outBuf_p);
else if (outRas64)
setOutputRaster<TRaster64P, TPixel64>(outRas64, dimOut, outBuf_p);
else if (outRasF)
setOutputRaster<TRasterFP, TPixelF>(outRasF, dimOut, outBuf_p);
// modify gamma
if (getFxVersion() == 1 && tile.getRaster()->isLinear()) {
tile.getRaster()->setLinear(false);
TRop::toLinearRGB(tile.getRaster(), ri.m_colorSpaceGamma);
} else if (getFxVersion() >= 2 && !tile.getRaster()->isLinear()) {
tile.getRaster()->setLinear(true);
TRop::tosRGB(tile.getRaster(), ri.m_colorSpaceGamma);
}
outBuf_ras->unlock();
}
//------------------------------------------------------------
void Iwa_RainbowFx::getParamUIs(TParamUIConcept*& concepts, int& length) {
concepts = new TParamUIConcept[length = 3];
concepts[0].m_type = TParamUIConcept::POINT;
concepts[0].m_label = "Center";
concepts[0].m_params.push_back(m_center);
concepts[1].m_type = TParamUIConcept::RADIUS;
concepts[1].m_label = "Radius";
concepts[1].m_params.push_back(m_radius);
concepts[1].m_params.push_back(m_center);
concepts[2].m_type = TParamUIConcept::RAINBOW_WIDTH;
concepts[2].m_label = "Width";
concepts[2].m_params.push_back(m_width_scale);
concepts[2].m_params.push_back(m_radius);
concepts[2].m_params.push_back(m_center);
}
//------------------------------------------------------------
bool Iwa_RainbowFx::toBeComputedInLinearColorSpace(bool settingsIsLinear,
bool tileIsLinear) const {
return settingsIsLinear;
}
//==============================================================================
FX_PLUGIN_IDENTIFIER(Iwa_RainbowFx, "iwa_RainbowFx");