Blob Blame Raw


#include "tstopwatch.h"

#ifdef _WIN32
#include <stdlib.h>
#else //_WIN32

#if defined(__APPLE_CC__)
#include <unistd.h>
#else
#include <sys/unistd.h>
#endif
#include <limits.h>
#include <sys/times.h>
#include <sys/types.h>
#include <time.h>

#ifndef STW_TICKS_PER_SECOND
#ifndef WIN32
extern "C" long sysconf(int);
#define STW_TICKS_PER_SECOND sysconf(_SC_CLK_TCK)
#else
#define STW_TICKS_PER_SECOND CLK_TCK
#endif
#endif
#endif

#define MAXSWNAMELENGHT 40
#define MAXSWTIMELENGHT 12

TStopWatch TStopWatch::StopWatch[10];

enum TimerType { TTUUnknown,
				 TTUHiRes,
				 TTUTickCount };
static void determineTimer();

#ifdef WIN32

static TimerType timerToUse = TTUUnknown;

static LARGE_INTEGER perfFreq; // ticks per second
static int perfFreqAdjust = 0; // in case Freq is too big
static int overheadTicks = 0;  // overhead  in calling timer

#else
static TimerType timerToUse = TTUTickCount;
#endif

using namespace std;

//-----------------------------------------------------------

TStopWatch::TStopWatch(string name)
	: m_name(name), m_active(false), m_isRunning(false)
{
	if (timerToUse == TTUUnknown)
		determineTimer();

	m_start = 0;
#ifdef _WIN32
	m_startUser.dwHighDateTime = m_startUser.dwLowDateTime = 0;
	m_startSystem.dwHighDateTime = m_startSystem.dwLowDateTime = 0;
#else
	m_startUser = 0;
	m_startSystem = 0;
#endif //_WIN32
	m_tm = 0;
	m_tmUser = 0;
	m_tmSystem = 0;
}

//-----------------------------------------------------------

TStopWatch::~TStopWatch()
{
	m_active = false;
}

//-----------------------------------------------------------

void TStopWatch::setStartToCurrentTime()
{
#ifdef _WIN32
	FILETIME creationTime, exitTime;
	BOOL ret = GetProcessTimes(GetCurrentProcess(), // specifies the process of interest
							   &creationTime,
							   &exitTime,
							   &m_startSystem,
							   &m_startUser);

	if (timerToUse == TTUTickCount) {
		m_start = GetTickCount();
	} else {
		QueryPerformanceCounter(&m_hrStart);
	}
#else
	struct tms clk;
	m_start = times(&clk);
	m_startUser = clk.tms_utime;
	m_startSystem = clk.tms_stime;
#endif //_WIN32
}

//-----------------------------------------------------------

void TStopWatch::reset()
{
	m_tm = 0;
	m_tmUser = 0;
	m_tmSystem = 0;
	setStartToCurrentTime();
}

//-----------------------------------------------------------

void TStopWatch::start(bool resetFlag)
{
	if (resetFlag)
		reset();
	if (m_isRunning)
		return;
	m_active = true;
	m_isRunning = true;
	setStartToCurrentTime();
}

//-----------------------------------------------------------

#ifdef _WIN32
inline __int64 FileTimeToInt64(LPFILETIME pFileTime)
{
	__int64 val;
	val = pFileTime->dwHighDateTime;
	val <<= 32;
	val |= pFileTime->dwLowDateTime;
	return val;
}
#endif //_WIN32

//-----------------------------------------------------------

//
// Aggiunge il tempo trascorso fra start(startUser, startSystem) e l'istante corrente
// a tm(tmUser, tmSystem)
//
static void checkTime(START start, START_USER startUser, START_SYSTEM startSystem,
					  TM_TOTAL &tm, TM_USER &tmUser, TM_SYSTEM &tmSystem)
{
	assert(timerToUse == TTUTickCount);

#ifdef WIN32

	DWORD tm_stop;
	FILETIME creationTime, exitTime, stopSystem, stopUser;
	BOOL ret = GetProcessTimes(GetCurrentProcess(), // specifies the process of interest
							   &creationTime,
							   &exitTime,
							   &stopSystem,
							   &stopUser);
	tm_stop = GetTickCount();
	assert(tm_stop >= start);
	tm += tm_stop - start; //total elapsed time

	tmUser += FileTimeToInt64(&stopUser) - FileTimeToInt64(&startUser);		  //user elapsed time
	tmSystem += FileTimeToInt64(&stopSystem) - FileTimeToInt64(&startSystem); //system elapsed time

#else //WIN32

	struct tms clk;
	clock_t tm_stop;
	tm_stop = times(&clk);
	assert(tm_stop >= start);
	tm += tm_stop - start;
	tmUser += clk.tms_utime - startUser;
	tmSystem += clk.tms_stime - startSystem;

#endif //WIN32
}

//-----------------------------------------------------------

#ifdef WIN32

//
// come checkTime, ma usa i timer ad alta risoluzione
//
namespace
{

//-----------------------------------------------------------

void hrCheckTime(LARGE_INTEGER start, START_USER startUser, START_SYSTEM startSystem,
				 TM_TOTAL &tm, TM_USER &tmUser, TM_SYSTEM &tmSystem)
{
	assert(timerToUse != TTUTickCount);

	LARGE_INTEGER hrTm_stop;
	FILETIME creationTime, exitTime, stopSystem, stopUser;
	BOOL ret = GetProcessTimes(GetCurrentProcess(), // specifies the process of interest
							   &creationTime,
							   &exitTime,
							   &stopSystem,
							   &stopUser);

	QueryPerformanceCounter(&hrTm_stop);
	assert(hrTm_stop.HighPart > start.HighPart ||
		   hrTm_stop.HighPart == start.HighPart && hrTm_stop.LowPart >= start.LowPart);

	LARGE_INTEGER Freq = perfFreq;
	int Oht = overheadTicks;

	LARGE_INTEGER dtime;
	//faccio "a mano" la differenza dtime = m_tStop - m_tStart
	dtime.HighPart = hrTm_stop.HighPart - start.HighPart;
	if (hrTm_stop.LowPart >= start.LowPart)
		dtime.LowPart = hrTm_stop.LowPart - start.LowPart;
	else {
		assert(dtime.HighPart > 0);
		dtime.HighPart--;
		dtime.LowPart = hrTm_stop.LowPart + ~start.LowPart + 1;
	}

	int shift = 0;
	if (Freq.HighPart > 0) {
		int h = Freq.HighPart;
		while (h > 0) {
			h >>= 1;
			shift++;
		}
	}
	if ((dtime.HighPart >> shift) > 0) {
		int h = dtime.HighPart >> shift;
		while (h > 0) {
			h >>= 1;
			shift++;
		}
	}
	if (shift > 0) {
		dtime.QuadPart = Int64ShrlMod32(dtime.QuadPart, shift);
		Freq.QuadPart = Int64ShrlMod32(Freq.QuadPart, shift);
	}
	assert(Freq.HighPart == 0);
	assert(dtime.HighPart == 0);

	double totalTime = 1000.0 * dtime.LowPart / Freq.LowPart;
	tm += troundp(totalTime);

	tmUser += FileTimeToInt64(&stopUser) - FileTimeToInt64(&startUser);		  //user elapsed time
	tmSystem += FileTimeToInt64(&stopSystem) - FileTimeToInt64(&startSystem); //system elapsed time
}

//-----------------------------------------------------------

} //namespace

#endif //WIN32

//-----------------------------------------------------------

void TStopWatch::stop()
{
	if (!m_isRunning)
		return;
	m_isRunning = false;
#ifdef WIN32
	if (timerToUse == TTUTickCount)
		checkTime(m_start, m_startUser, m_startSystem, m_tm, m_tmUser, m_tmSystem);
	else
		hrCheckTime(m_hrStart, m_startUser, m_startSystem, m_tm, m_tmUser, m_tmSystem);
#else
	checkTime(m_start, m_startUser, m_startSystem, m_tm, m_tmUser, m_tmSystem);
#endif
}

//-----------------------------------------------------------

void TStopWatch::getElapsedTime(TM_TOTAL &tm, TM_USER &user, TM_SYSTEM &system)
{
	if (m_isRunning) {
		TM_TOTAL cur_tm = 0;
		TM_USER cur_tmUser = 0;
		TM_SYSTEM cur_tmSystem = 0;

#ifdef WIN32
		if (timerToUse == TTUTickCount)
			checkTime(m_start, m_startUser, m_startSystem, cur_tm, cur_tmUser, cur_tmSystem);
		else
			hrCheckTime(m_hrStart, m_startUser, m_startSystem, cur_tm, cur_tmUser, cur_tmSystem);
#else
		checkTime(m_start, m_startUser, m_startSystem, cur_tm, cur_tmUser, cur_tmSystem);
#endif

		tm = m_tm + cur_tm;
		user = m_tmUser + cur_tmUser;
		system = m_tmSystem + cur_tmSystem;
	} else {
		tm = m_tm;
		user = m_tmUser;
		system = m_tmSystem;
	}
}

//-----------------------------------------------------------

TUINT32 TStopWatch::getTotalTime()
{
	TM_TOTAL tm;
	TM_USER user;
	TM_SYSTEM system;
	getElapsedTime(tm, user, system);
#ifdef _WIN32
	return tm;
#else
	return (TINT32)(tm * 1000) / STW_TICKS_PER_SECOND;
#endif //_WIN32
}

//-----------------------------------------------------------

TUINT32 TStopWatch::getUserTime()
{
	TM_TOTAL tm;
	TM_USER user;
	TM_SYSTEM system;
	getElapsedTime(tm, user, system);
#ifdef _WIN32
	return (TINT32)(user / 10000);
#else
	return (TINT32)(user * 1000) / STW_TICKS_PER_SECOND;
#endif //_WIN32
}

//-----------------------------------------------------------

TUINT32 TStopWatch::getSystemTime()
{
	TM_TOTAL tm;
	TM_USER user;
	TM_SYSTEM system;
	getElapsedTime(tm, user, system);
#ifdef _WIN32
	return (TINT32)(system / 10000);
#else
	return (TINT32)(system * 1000) / STW_TICKS_PER_SECOND;
#endif //_WIN32
}

//-----------------------------------------------------------

TStopWatch::operator string()
{
	char buffer[256];
	ostrstream out(buffer, sizeof(buffer));
	out << m_name.c_str() << ": " << (int)getTotalTime() << " u" << (int)getUserTime() << " s" << (TINT32)getSystemTime();
	return string(buffer, out.pcount());
}

//------------------------------------------------------------

void TStopWatch::print()
{
	print(cout);
}

//-------------------------------------------------------------------------------------------

void TStopWatch::print(ostream &out)
{
	string s(*this);
	out << s.c_str() << endl;
}

//-------------------------------------------------------------------------------------------

void TStopWatch::printGlobals(ostream &out)
{
	const int n = sizeof(StopWatch) / sizeof(StopWatch[0]);
	for (int i = 0; i < n; i++)
		if (StopWatch[i].m_active)
			StopWatch[i].print(out);
}

//-------------------------------------------------------------------------------------------

void TStopWatch::printGlobals()
{
	printGlobals(cout);
}

//-----------------------------------------------------------
#ifdef WIN32

void dummyFunction()
{
	// It's used just to calculate the overhead
	return;
}

void determineTimer()
{

	void (*pFunc)() = dummyFunction;
	// cout << "DETERMINE TIMER" << endl;
	// Assume the worst
	timerToUse = TTUTickCount;
	if (QueryPerformanceFrequency(&perfFreq)) {
		// We can use hires timer, determine overhead
		timerToUse = TTUHiRes;
		overheadTicks = 200;
		for (int i = 0; i < 20; i++) {
			LARGE_INTEGER b, e;
			int Ticks;
			QueryPerformanceCounter(&b);
			(*pFunc)();
			QueryPerformanceCounter(&e);
			Ticks = e.LowPart - b.LowPart;
			if (Ticks >= 0 && Ticks < overheadTicks)
				overheadTicks = Ticks;
		}
		// See if Freq fits in 32 bits; if not lose some precision
		perfFreqAdjust = 0;
		int High32 = perfFreq.HighPart;
		while (High32) {
			High32 >>= 1;
			perfFreqAdjust++;
		}
	}
}
#else
void determineTimer()
{
}
#endif