Blob Blame Raw
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<title>SuperLU: SRC/dgssvx.c File Reference</title>
<link href="doxygen.css" rel="stylesheet" type="text/css">
<link href="tabs.css" rel="stylesheet" type="text/css">
</head><body>
<!-- Generated by Doxygen 1.5.5 -->
<div class="navigation" id="top">
  <div class="tabs">
    <ul>
      <li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
      <li><a href="annotated.html"><span>Data&nbsp;Structures</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
    </ul>
  </div>
</div>
<div class="contents">
<h1>SRC/dgssvx.c File Reference</h1>Solves the system of linear equations A*X=B or A'*X=B. <a href="#_details">More...</a>
<p>
<code>#include &quot;<a class="el" href="slu__ddefs_8h-source.html">slu_ddefs.h</a>&quot;</code><br>
<table border="0" cellpadding="0" cellspacing="0">
<tr><td></td></tr>
<tr><td colspan="2"><br><h2>Functions</h2></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="dgssvx_8c.html#a463b60835d9bca4a4bb1386076d1488">dgssvx</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *options, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *<a class="el" href="ilu__zdrop__row_8c.html#c900805a486cbb8489e3c176ed6e0d8e">A</a>, int *perm_c, int *perm_r, int *etree, char *equed, double *R, double *C, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *L, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *U, void *work, int lwork, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *B, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *X, double *recip_pivot_growth, double *rcond, double *ferr, double *berr, <a class="el" href="structmem__usage__t.html">mem_usage_t</a> *mem_usage, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *stat, int *info)</td></tr>

</table>
<hr><a name="_details"></a><h2>Detailed Description</h2>
<pre>
 -- SuperLU routine (version 3.0) --
 Univ. of California Berkeley, Xerox Palo Alto Research Center,
 and Lawrence Berkeley National Lab.
 October 15, 2003
 </pre> <hr><h2>Function Documentation</h2>
<a class="anchor" name="a463b60835d9bca4a4bb1386076d1488"></a><!-- doxytag: member="dgssvx.c::dgssvx" ref="a463b60835d9bca4a4bb1386076d1488" args="(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r, int *etree, char *equed, double *R, double *C, SuperMatrix *L, SuperMatrix *U, void *work, int lwork, SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, double *rcond, double *ferr, double *berr, mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)" -->
<div class="memitem">
<div class="memproto">
      <table class="memname">
        <tr>
          <td class="memname">void dgssvx           </td>
          <td>(</td>
          <td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *&nbsp;</td>
          <td class="paramname"> <em>options</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> *&nbsp;</td>
          <td class="paramname"> <em>A</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">int *&nbsp;</td>
          <td class="paramname"> <em>perm_c</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">int *&nbsp;</td>
          <td class="paramname"> <em>perm_r</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">int *&nbsp;</td>
          <td class="paramname"> <em>etree</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">char *&nbsp;</td>
          <td class="paramname"> <em>equed</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">double *&nbsp;</td>
          <td class="paramname"> <em>R</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">double *&nbsp;</td>
          <td class="paramname"> <em>C</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> *&nbsp;</td>
          <td class="paramname"> <em>L</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> *&nbsp;</td>
          <td class="paramname"> <em>U</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">void *&nbsp;</td>
          <td class="paramname"> <em>work</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">int&nbsp;</td>
          <td class="paramname"> <em>lwork</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> *&nbsp;</td>
          <td class="paramname"> <em>B</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> *&nbsp;</td>
          <td class="paramname"> <em>X</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">double *&nbsp;</td>
          <td class="paramname"> <em>recip_pivot_growth</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">double *&nbsp;</td>
          <td class="paramname"> <em>rcond</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">double *&nbsp;</td>
          <td class="paramname"> <em>ferr</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">double *&nbsp;</td>
          <td class="paramname"> <em>berr</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structmem__usage__t.html">mem_usage_t</a> *&nbsp;</td>
          <td class="paramname"> <em>mem_usage</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *&nbsp;</td>
          <td class="paramname"> <em>stat</em>, </td>
        </tr>
        <tr>
          <td class="paramkey"></td>
          <td></td>
          <td class="paramtype">int *&nbsp;</td>
          <td class="paramname"> <em>info</em></td><td>&nbsp;</td>
        </tr>
        <tr>
          <td></td>
          <td>)</td>
          <td></td><td></td><td width="100%"></td>
        </tr>
      </table>
</div>
<div class="memdoc">

<p>
<pre>
 Purpose
 =======</pre><p>
<pre> DGSSVX solves the system of linear equations A*X=B or A'*X=B, using
 the LU factorization from <a class="el" href="dgstrf_8c.html#65a25ed27f2524e9cbc8f6ce8cd22c38">dgstrf()</a>. Error bounds on the solution and
 a condition estimate are also provided. It performs the following steps:</pre><p>
<pre>   1. If A is stored column-wise (A-&gt;Stype = SLU_NC):</pre><p>
<pre>      1.1. If options-&gt;Equil = YES, scaling factors are computed to
           equilibrate the system:
           options-&gt;Trans = NOTRANS:
               diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
           options-&gt;Trans = TRANS:
               (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
           options-&gt;Trans = CONJ:
               (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
           Whether or not the system will be equilibrated depends on the
           scaling of the matrix A, but if equilibration is used, A is
           overwritten by diag(R)*A*diag(C) and B by diag(R)*B
           (if options-&gt;Trans=NOTRANS) or diag(C)*B (if options-&gt;Trans
           = TRANS or CONJ).</pre><p>
<pre>      1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
           matrix that usually preserves sparsity.
           For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre>      1.3. If options-&gt;Fact != FACTORED, the LU decomposition is used to
           factor the matrix A (after equilibration if options-&gt;Equil = YES)
           as Pr*A*Pc = L*U, with Pr determined by partial pivoting.</pre><p>
<pre>      1.4. Compute the reciprocal pivot growth factor.</pre><p>
<pre>      1.5. If some U(i,i) = 0, so that U is exactly singular, then the
           routine returns with info = i. Otherwise, the factored form of 
           A is used to estimate the condition number of the matrix A. If
           the reciprocal of the condition number is less than machine
           precision, info = A-&gt;ncol+1 is returned as a warning, but the
           routine still goes on to solve for X and computes error bounds
           as described below.</pre><p>
<pre>      1.6. The system of equations is solved for X using the factored form
           of A.</pre><p>
<pre>      1.7. If options-&gt;IterRefine != NOREFINE, iterative refinement is
           applied to improve the computed solution matrix and calculate
           error bounds and backward error estimates for it.</pre><p>
<pre>      1.8. If equilibration was used, the matrix X is premultiplied by
           diag(C) (if options-&gt;Trans = NOTRANS) or diag(R)
           (if options-&gt;Trans = TRANS or CONJ) so that it solves the
           original system before equilibration.</pre><p>
<pre>   2. If A is stored row-wise (A-&gt;Stype = SLU_NR), apply the above algorithm
      to the transpose of A:</pre><p>
<pre>      2.1. If options-&gt;Equil = YES, scaling factors are computed to
           equilibrate the system:
           options-&gt;Trans = NOTRANS:
               diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
           options-&gt;Trans = TRANS:
               (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
           options-&gt;Trans = CONJ:
               (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
           Whether or not the system will be equilibrated depends on the
           scaling of the matrix A, but if equilibration is used, A' is
           overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
           (if trans='N') or diag(C)*B (if trans = 'T' or 'C').</pre><p>
<pre>      2.2. Permute columns of transpose(A) (rows of A), 
           forming transpose(A)*Pc, where Pc is a permutation matrix that 
           usually preserves sparsity.
           For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre>      2.3. If options-&gt;Fact != FACTORED, the LU decomposition is used to
           factor the transpose(A) (after equilibration if 
           options-&gt;Fact = YES) as Pr*transpose(A)*Pc = L*U with the
           permutation Pr determined by partial pivoting.</pre><p>
<pre>      2.4. Compute the reciprocal pivot growth factor.</pre><p>
<pre>      2.5. If some U(i,i) = 0, so that U is exactly singular, then the
           routine returns with info = i. Otherwise, the factored form 
           of transpose(A) is used to estimate the condition number of the
           matrix A. If the reciprocal of the condition number
           is less than machine precision, info = A-&gt;nrow+1 is returned as
           a warning, but the routine still goes on to solve for X and
           computes error bounds as described below.</pre><p>
<pre>      2.6. The system of equations is solved for X using the factored form
           of transpose(A).</pre><p>
<pre>      2.7. If options-&gt;IterRefine != NOREFINE, iterative refinement is
           applied to improve the computed solution matrix and calculate
           error bounds and backward error estimates for it.</pre><p>
<pre>      2.8. If equilibration was used, the matrix X is premultiplied by
           diag(C) (if options-&gt;Trans = NOTRANS) or diag(R) 
           (if options-&gt;Trans = TRANS or CONJ) so that it solves the
           original system before equilibration.</pre><p>
<pre>   See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
 =========</pre><p>
<pre> options (input) superlu_options_t*
         The structure defines the input parameters to control
         how the LU decomposition will be performed and how the
         system will be solved.</pre><p>
<pre> A       (input/output) SuperMatrix*
         Matrix A in A*X=B, of dimension (A-&gt;nrow, A-&gt;ncol). The number
         of the linear equations is A-&gt;nrow. Currently, the type of A can be:
         Stype = SLU_NC or SLU_NR, Dtype = SLU_D, Mtype = SLU_GE.
         In the future, more general A may be handled.</pre><p>
<pre>         On entry, If options-&gt;Fact = FACTORED and equed is not 'N', 
         then A must have been equilibrated by the scaling factors in
         R and/or C.  
         On exit, A is not modified if options-&gt;Equil = NO, or if 
         options-&gt;Equil = YES but equed = 'N' on exit.
         Otherwise, if options-&gt;Equil = YES and equed is not 'N',
         A is scaled as follows:
         If A-&gt;Stype = SLU_NC:
           equed = 'R':  A := diag(R) * A
           equed = 'C':  A := A * diag(C)
           equed = 'B':  A := diag(R) * A * diag(C).
         If A-&gt;Stype = SLU_NR:
           equed = 'R':  transpose(A) := diag(R) * transpose(A)
           equed = 'C':  transpose(A) := transpose(A) * diag(C)
           equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).</pre><p>
<pre> perm_c  (input/output) int*
	   If A-&gt;Stype = SLU_NC, Column permutation vector of size A-&gt;ncol,
         which defines the permutation matrix Pc; perm_c[i] = j means
         column i of A is in position j in A*Pc.
         On exit, perm_c may be overwritten by the product of the input
         perm_c and a permutation that postorders the elimination tree
         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
         is already in postorder.</pre><p>
<pre>         If A-&gt;Stype = SLU_NR, column permutation vector of size A-&gt;nrow,
         which describes permutation of columns of transpose(A) 
         (rows of A) as described above.</pre><p>
<pre> perm_r  (input/output) int*
         If A-&gt;Stype = SLU_NC, row permutation vector of size A-&gt;nrow, 
         which defines the permutation matrix Pr, and is determined
         by partial pivoting.  perm_r[i] = j means row i of A is in 
         position j in Pr*A.</pre><p>
<pre>         If A-&gt;Stype = SLU_NR, permutation vector of size A-&gt;ncol, which
         determines permutation of rows of transpose(A)
         (columns of A) as described above.</pre><p>
<pre>         If options-&gt;Fact = SamePattern_SameRowPerm, the pivoting routine
         will try to use the input perm_r, unless a certain threshold
         criterion is violated. In that case, perm_r is overwritten by a
         new permutation determined by partial pivoting or diagonal
         threshold pivoting.
         Otherwise, perm_r is output argument.</pre><p>
<pre> etree   (input/output) int*,  dimension (A-&gt;ncol)
         Elimination tree of Pc'*A'*A*Pc.
         If options-&gt;Fact != FACTORED and options-&gt;Fact != DOFACT,
         etree is an input argument, otherwise it is an output argument.
         Note: etree is a vector of parent pointers for a forest whose
         vertices are the integers 0 to A-&gt;ncol-1; etree[root]==A-&gt;ncol.</pre><p>
<pre> equed   (input/output) char*
         Specifies the form of equilibration that was done.
         = 'N': No equilibration.
         = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
         = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
         = 'B': Both row and column equilibration, i.e., A was replaced 
                by diag(R)*A*diag(C).
         If options-&gt;Fact = FACTORED, equed is an input argument,
         otherwise it is an output argument.</pre><p>
<pre> R       (input/output) double*, dimension (A-&gt;nrow)
         The row scale factors for A or transpose(A).
         If equed = 'R' or 'B', A (if A-&gt;Stype = SLU_NC) or transpose(A)
             (if A-&gt;Stype = SLU_NR) is multiplied on the left by diag(R).
         If equed = 'N' or 'C', R is not accessed.
         If options-&gt;Fact = FACTORED, R is an input argument,
             otherwise, R is output.
         If options-&gt;zFact = FACTORED and equed = 'R' or 'B', each element
             of R must be positive.</pre><p>
<pre> C       (input/output) double*, dimension (A-&gt;ncol)
         The column scale factors for A or transpose(A).
         If equed = 'C' or 'B', A (if A-&gt;Stype = SLU_NC) or transpose(A)
             (if A-&gt;Stype = SLU_NR) is multiplied on the right by diag(C).
         If equed = 'N' or 'R', C is not accessed.
         If options-&gt;Fact = FACTORED, C is an input argument,
             otherwise, C is output.
         If options-&gt;Fact = FACTORED and equed = 'C' or 'B', each element
             of C must be positive.</pre><p>
<pre> L       (output) SuperMatrix*
	   The factor L from the factorization
             Pr*A*Pc=L*U              (if A-&gt;Stype SLU_= NC) or
             Pr*transpose(A)*Pc=L*U   (if A-&gt;Stype = SLU_NR).
         Uses compressed row subscripts storage for supernodes, i.e.,
         L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.</pre><p>
<pre> U       (output) SuperMatrix*
	   The factor U from the factorization
             Pr*A*Pc=L*U              (if A-&gt;Stype = SLU_NC) or
             Pr*transpose(A)*Pc=L*U   (if A-&gt;Stype = SLU_NR).
         Uses column-wise storage scheme, i.e., U has types:
         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.</pre><p>
<pre> work    (workspace/output) void*, size (lwork) (in bytes)
         User supplied workspace, should be large enough
         to hold data structures for factors L and U.
         On exit, if fact is not 'F', L and U point to this array.</pre><p>
<pre> lwork   (input) int
         Specifies the size of work array in bytes.
         = 0:  allocate space internally by system malloc;
         &gt; 0:  use user-supplied work array of length lwork in bytes,
               returns error if space runs out.
         = -1: the routine guesses the amount of space needed without
               performing the factorization, and returns it in
               mem_usage-&gt;total_needed; no other side effects.</pre><p>
<pre>         See argument 'mem_usage' for memory usage statistics.</pre><p>
<pre> B       (input/output) SuperMatrix*
         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
         On entry, the right hand side matrix.
         If B-&gt;ncol = 0, only LU decomposition is performed, the triangular
                         solve is skipped.
         On exit,
            if equed = 'N', B is not modified; otherwise
            if A-&gt;Stype = SLU_NC:
               if options-&gt;Trans = NOTRANS and equed = 'R' or 'B',
                  B is overwritten by diag(R)*B;
               if options-&gt;Trans = TRANS or CONJ and equed = 'C' of 'B',
                  B is overwritten by diag(C)*B;
            if A-&gt;Stype = SLU_NR:
               if options-&gt;Trans = NOTRANS and equed = 'C' or 'B',
                  B is overwritten by diag(C)*B;
               if options-&gt;Trans = TRANS or CONJ and equed = 'R' of 'B',
                  B is overwritten by diag(R)*B.</pre><p>
<pre> X       (output) SuperMatrix*
         X has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE. 
         If info = 0 or info = A-&gt;ncol+1, X contains the solution matrix
         to the original system of equations. Note that A and B are modified
         on exit if equed is not 'N', and the solution to the equilibrated
         system is inv(diag(C))*X if options-&gt;Trans = NOTRANS and
         equed = 'C' or 'B', or inv(diag(R))*X if options-&gt;Trans = 'T' or 'C'
         and equed = 'R' or 'B'.</pre><p>
<pre> recip_pivot_growth (output) double*
         The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
         The infinity norm is used. If recip_pivot_growth is much less
         than 1, the stability of the LU factorization could be poor.</pre><p>
<pre> rcond   (output) double*
         The estimate of the reciprocal condition number of the matrix A
         after equilibration (if done). If rcond is less than the machine
         precision (in particular, if rcond = 0), the matrix is singular
         to working precision. This condition is indicated by a return
         code of info &gt; 0.</pre><p>
<pre> FERR    (output) double*, dimension (B-&gt;ncol)   
         The estimated forward error bound for each solution vector   
         X(j) (the j-th column of the solution matrix X).   
         If XTRUE is the true solution corresponding to X(j), FERR(j) 
         is an estimated upper bound for the magnitude of the largest 
         element in (X(j) - XTRUE) divided by the magnitude of the   
         largest element in X(j).  The estimate is as reliable as   
         the estimate for RCOND, and is almost always a slight   
         overestimate of the true error.
         If options-&gt;IterRefine = NOREFINE, ferr = 1.0.</pre><p>
<pre> BERR    (output) double*, dimension (B-&gt;ncol)
         The componentwise relative backward error of each solution   
         vector X(j) (i.e., the smallest relative change in   
         any element of A or B that makes X(j) an exact solution).
         If options-&gt;IterRefine = NOREFINE, berr = 1.0.</pre><p>
<pre> mem_usage (output) mem_usage_t*
         Record the memory usage statistics, consisting of following fields:<ul>
<li>for_lu (float)
           The amount of space used in bytes for L data structures.</li><li>total_needed (float)
           The amount of space needed in bytes to perform factorization.</li><li>expansions (int)
           The number of memory expansions during the LU factorization.</li></ul>
</pre><p>
<pre> stat   (output) SuperLUStat_t*
        Record the statistics on runtime and floating-point operation count.
        See <a class="el" href="slu__util_8h.html" title="Utility header file.">slu_util.h</a> for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info    (output) int*
         = 0: successful exit   
         &lt; 0: if info = -i, the i-th argument had an illegal value   
         &gt; 0: if info = i, and i is   
              &lt;= A-&gt;ncol: U(i,i) is exactly zero. The factorization has   
                    been completed, but the factor U is exactly   
                    singular, so the solution and error bounds   
                    could not be computed.   
              = A-&gt;ncol+1: U is nonsingular, but RCOND is less than machine
                    precision, meaning that the matrix is singular to
                    working precision. Nevertheless, the solution and
                    error bounds are computed because there are a number
                    of situations where the computed solution can be more
                    accurate than the value of RCOND would suggest.   
              &gt; A-&gt;ncol+1: number of bytes allocated when memory allocation
                    failure occurred, plus A-&gt;ncol.
 </pre> 
</div>
</div><p>
</div>
<hr size="1"><address style="text-align: right;"><small>Generated on Mon Nov 22 10:23:47 2010 for SuperLU by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.5 </small></address>
</body>
</html>