<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<title>SuperLU: SRC/slu_sdefs.h File Reference</title>
<link href="doxygen.css" rel="stylesheet" type="text/css">
<link href="tabs.css" rel="stylesheet" type="text/css">
</head><body>
<!-- Generated by Doxygen 1.5.5 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main Page</span></a></li>
<li><a href="annotated.html"><span>Data Structures</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1>SRC/slu_sdefs.h File Reference</h1>Header file for real operations. <a href="#_details">More...</a>
<p>
<code>#include <math.h></code><br>
<code>#include <limits.h></code><br>
<code>#include "<a class="el" href="slu__Cnames_8h-source.html">slu_Cnames.h</a>"</code><br>
<code>#include "<a class="el" href="supermatrix_8h-source.html">supermatrix.h</a>"</code><br>
<code>#include "<a class="el" href="slu__util_8h-source.html">slu_util.h</a>"</code><br>
<p>
<a href="slu__sdefs_8h-source.html">Go to the source code of this file.</a><table border="0" cellpadding="0" cellspacing="0">
<tr><td></td></tr>
<tr><td colspan="2"><br><h2>Data Structures</h2></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">struct </td><td class="memItemRight" valign="bottom"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a></td></tr>
<tr><td colspan="2"><br><h2>Typedefs</h2></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">typedef int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b6fd6105e64ed14a0c9281326f05e623">int_t</a></td></tr>
<tr><td colspan="2"><br><h2>Functions</h2></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#44bbae3b1218d951ed229c461a5f14b6">sgssv</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Driver routines. <a href="#44bbae3b1218d951ed229c461a5f14b6"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#4d6a37b565522c7c77a173826588deee">sgssvx</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, int *, char *, float *, float *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, void *, int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, float *, float *, float *, <a class="el" href="structmem__usage__t.html">mem_usage_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ff6cdbb84f0fbd4cbce7a64ea1f7eb20">sgsisv</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b57375a81b174861bcb68ed11861a4f5">sgsisx</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, int *, char *, float *, float *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, void *, int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, float *, <a class="el" href="structmem__usage__t.html">mem_usage_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#bb3d30eea43abc536793244e7564e70d">sCreate_CompCol_Matrix</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int, int, int, float *, int *, int *, <a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a>, <a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a>, <a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a>)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Supernodal LU factor related. <a href="#bb3d30eea43abc536793244e7564e70d"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#77496309d539716f616365a2515aa653">sCreate_CompRow_Matrix</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int, int, int, float *, int *, int *, <a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a>, <a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a>, <a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a>)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#7369dba9a8c3e34a27bdc9eba73cbe3e">sCopy_CompCol_Matrix</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Copy matrix A into matrix B. <a href="#7369dba9a8c3e34a27bdc9eba73cbe3e"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ca98118f5539f098beff0b70c041c2e6">sCreate_Dense_Matrix</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int, int, float *, int, <a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a>, <a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a>, <a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a>)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#f4386b0d87e1c8886b58fcf9d243bc12">sCreate_SuperNode_Matrix</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int, int, int, float *, int *, int *, int *, int *, int *, <a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a>, <a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a>, <a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a>)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#5ef26ab4351b4ab39c2ef3d0ff5d6cb5">sCopy_Dense_Matrix</a> (int, int, float *, int, float *, int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#8086902aa8be3fc7d04c3c82ec3a79dc">countnz</a> (const int, int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Count the total number of nonzeros in factors L and U, and in the symmetrically reduced L. <a href="#8086902aa8be3fc7d04c3c82ec3a79dc"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ae8eb367a0a2fcdf734738bc9630df85">ilu_countnz</a> (const int, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Count the total number of nonzeros in factors L and U. <a href="#ae8eb367a0a2fcdf734738bc9630df85"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#7061332d759d7e4d73c1b2e5cb0bf2bf">fixupL</a> (const int, const int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Fix up the data storage lsub for L-subscripts. It removes the subscript sets for structural pruning, and applies permuation to the remaining subscripts. <a href="#7061332d759d7e4d73c1b2e5cb0bf2bf"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#aef6f98786d0bd76103237385ddbeb9f">sallocateA</a> (int, int, float **, int **, int **)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Allocate storage for original matrix A. <a href="#aef6f98786d0bd76103237385ddbeb9f"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#f006a81b576fffa92a1c848ac3191c70">sgstrf</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int, int, int *, void *, int, int *, int *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#d9d54c8dfc11f1e034b4b7175be60ffb">ssnode_dfs</a> (const int, const int, const int *, const int *, const int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#60e60255360fae0b1458da070690a3a2">ssnode_bmod</a> (const int, const int, const int, float *, float *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Performs numeric block updates within the relaxed snode. <a href="#60e60255360fae0b1458da070690a3a2"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#77baf210393e04fa71d4e73b5e60e556">spanel_dfs</a> (const int, const int, const int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, float *, int *, int *, int *, int *, int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#51486936a9ff5079afed80eb5bf8a3e0">spanel_bmod</a> (const int, const int, const int, const int, float *, float *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#20dc9300377cb7240572ba34a31af3d1">scolumn_dfs</a> (const int, const int, int *, int *, int *, int *, int *, int *, int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#e21004feb23626f7ea648b46657a257a">scolumn_bmod</a> (const int, const int, float *, float *, int *, int *, int, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#249a312149bcf091fcc8adbd0c536cb2">scopy_to_ucol</a> (int, int, int *, int *, int *, float *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#d7ddf03faedae25b4d73e0b6b33bf50c">spivotL</a> (const int, const double, int *, int *, int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#cf9da2c45289246ef663fc4a96d1ad78">spruneL</a> (const int, const int *, const int, const int, const int *, const int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b345670a95db3f9c4b9c451224db8227">sreadmt</a> (int *, int *, int *, float **, int **, int **)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b79adc3c2d496feb17f359aa303211fc">sGenXtrue</a> (int, int, float *, int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#c8b784b5551863e8d50047ee280c34cf">sFillRHS</a> (<a class="el" href="superlu__enum__consts_8h.html#0c4e17b2d5cea33f9991ccc6a6678d62">trans_t</a>, int, float *, int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's. <a href="#c8b784b5551863e8d50047ee280c34cf"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ea450a9c52512127d6eaaebf0a65f9ce">sgstrs</a> (<a class="el" href="superlu__enum__consts_8h.html#0c4e17b2d5cea33f9991ccc6a6678d62">trans_t</a>, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#22204c4186c4412ee33cd16285ee6bb0">sgsitrf</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int, int, int *, void *, int, int *, int *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#69557d06b4e300aa6aca944561f3bb32">sldperm</a> (int, int, int, int[], int[], float[], int[], float[], float[])</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#714eccb6cd0fb1fc0920e8a52489f1a5">ilu_ssnode_dfs</a> (const int, const int, const int *, const int *, const int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#a91b3297a15ace9ac5abd65c5e708f2d">ilu_spanel_dfs</a> (const int, const int, const int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, float *, float *, int *, int *, int *, int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ab2366ea3e2cdcbf51b976432fc43616">ilu_scolumn_dfs</a> (const int, const int, int *, int *, int *, int *, int *, int *, int *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#35a18be483569110edc1665d13e260e3">ilu_scopy_to_ucol</a> (int, int, int *, int *, int *, float *, int, <a class="el" href="superlu__enum__consts_8h.html#0cb73c13a7c2390c3a9a0a8913477ff0">milu_t</a>, double, int, float *, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, float *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b7f61e0a95c151f53f8a400bc9c6192e">ilu_spivotL</a> (const int, const double, int *, int *, int, int *, int *, int *, int *, double, <a class="el" href="superlu__enum__consts_8h.html#0cb73c13a7c2390c3a9a0a8913477ff0">milu_t</a>, float, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#5f5e67d3b2d715a388ca99bb28387fb9">ilu_sdrop_row</a> (<a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> *, int, int, double, int, int *, double *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, float *, float *, int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#3dbdb406f2fb8b186f0f8d3a4cd2d60d">sgsequ</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, float *, float *, float *, float *, int *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Driver related. <a href="#3dbdb406f2fb8b186f0f8d3a4cd2d60d"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#fe4b556cd9d484f53606d114f83649d4">slaqgs</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, float *, float, float, float, char *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#1c910cf12639a22a03727ad204575b3b">sgscon</a> (char *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float, float *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">float </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#cb8787465a6296109b9a306d5a315ff8">sPivotGrowth</a> (int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#e824bcb507f76ad3053d845352fb6b3d">sgsrfs</a> (<a class="el" href="superlu__enum__consts_8h.html#0c4e17b2d5cea33f9991ccc6a6678d62">trans_t</a>, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, int *, int *, char *, float *, float *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, float *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#a6d287b6b9bcaf72a692343e614c429c">sp_strsv</a> (char *, char *, char *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, <a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> *, int *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Solves one of the systems of equations A*x = b, or A'*x = b. <a href="#a6d287b6b9bcaf72a692343e614c429c"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#9e543b2d14781b56ef349114012b4fc9">sp_sgemv</a> (char *, float, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, int, float, float *, int)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,. <a href="#9e543b2d14781b56ef349114012b4fc9"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#35b4a0e44c32443df609069021d27812">sp_sgemm</a> (char *, char *, int, int, int, float, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *, int, float, float *, int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">float </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#47c1dd1b8332f4366d5c5112219fdb3a">slamch_</a> (char *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#f68715ec86cde90aa31fec07164d6ea6">sLUMemInit</a> (<a class="el" href="superlu__enum__consts_8h.html#c785c8235480e5cfef9848d89c047c0a">fact_t</a>, void *, int, int, int, int, int, float, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *, int **, float **)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Memory-related. <a href="#f68715ec86cde90aa31fec07164d6ea6"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b5b2859bf1ef1900506dfa702574c6ad">sSetRWork</a> (int, int, float *, float **, float **)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Set up pointers for real working arrays. <a href="#b5b2859bf1ef1900506dfa702574c6ad"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#9035f0d2a50cf5d8e29287572bd1be83">sLUWorkFree</a> (int *, float *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Free the working storage used by factor routines. <a href="#9035f0d2a50cf5d8e29287572bd1be83"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#9af26d0426eb0bb63755880f2e67e7b7">sLUMemXpand</a> (int, int, <a class="el" href="superlu__enum__consts_8h.html#bd31f838aefffa46191d0d7dc36a96b2">MemType</a>, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Expand the data structures for L and U during the factorization. <a href="#9af26d0426eb0bb63755880f2e67e7b7"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">float * </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#42361c3ce2ba81d149ffba01fbd6f138">floatMalloc</a> (int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">float * </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#3e1230bff11a9e47c35555299bcdcf1b">floatCalloc</a> (int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#b50ebebf3a620086366b6c310d52d681">smemory_usage</a> (const int, const int, const int, const int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#1357f9a3b2ffb9522883ad84affa63e3">sQuerySpace</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structmem__usage__t.html">mem_usage_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#db260ae3f26e2179b1cf33c3e754d6f1">ilu_sQuerySpace</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structmem__usage__t.html">mem_usage_t</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#734dbf3f5d66b2a53d88e69daaad729e">sreadhb</a> (int *, int *, int *, float **, int **, int **)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Auxiliary routines. <a href="#734dbf3f5d66b2a53d88e69daaad729e"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#d992a573876b4abfe192ec2bc207f6b0">sreadrb</a> (int *, int *, int *, float **, int **, int **)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#e99cb18465c8992235a7bc003237f692">sreadtriple</a> (int *, int *, int *, float **, int **, int **)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ef4be8ddf6a62ef48ca8dfc3a6992634">sCompRow_to_CompCol</a> (int, int, int, float *, int *, int *, float **, int **, int **)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Convert a row compressed storage into a column compressed storage. <a href="#ef4be8ddf6a62ef48ca8dfc3a6992634"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#2d734e40276e89a3ef04bf79bc21acb6">sfill</a> (float *, int, float)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Fills a float precision array with a given value. <a href="#2d734e40276e89a3ef04bf79bc21acb6"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ba0eeda28d139bf88878880edd3cca5a">sinf_norm_error</a> (int, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, float *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Check the inf-norm of the error vector. <a href="#ba0eeda28d139bf88878880edd3cca5a"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#dca8047332d0b0c161945583ecb3435d">PrintPerf</a> (<a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *, <a class="el" href="structmem__usage__t.html">mem_usage_t</a> *, float, float, float *, float *, char *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">float </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#98d44fe59660f87330b0172151a76141">sqselect</a> (int, float *, int)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#5cd6efad9d9fb7aef8a984f5e3cff66b">sPrint_CompCol_Matrix</a> (char *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Routines for debugging. <a href="#5cd6efad9d9fb7aef8a984f5e3cff66b"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#eb289a84407c9cbbb33cdf3dbb1dacbe">sPrint_SuperNode_Matrix</a> (char *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#25b29c47333295f4aa744e541e277ea0">sPrint_Dense_Matrix</a> (char *, <a class="el" href="structSuperMatrix.html">SuperMatrix</a> *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#297455c494a78c098b2bf418edbc6b16">sprint_lu_col</a> (char *, int, int, int *, <a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> *)</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Diagnostic print of column "jcol" in the U/L factor. <a href="#297455c494a78c098b2bf418edbc6b16"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#ad0c06e9adc1e29a0ab2e78c38119bb4">print_double_vec</a> (char *, int, double *)</td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="slu__sdefs_8h.html#46e1e8ccffc9a076461dbd042ae91654">check_tempv</a> (int, float *)</td></tr>
</table>
<hr><a name="_details"></a><h2>Detailed Description</h2>
<pre>
-- SuperLU routine (version 4.1) --
Univ. of California Berkeley, Xerox Palo Alto Research Center,
and Lawrence Berkeley National Lab.
November, 2010</pre><p>
<pre> Global data structures used in LU factorization -</pre><p>
<pre> nsuper: supernodes = nsuper + 1, numbered [0, nsuper].
(xsup,supno): supno[i] is the supernode no to which i belongs;
xsup(s) points to the beginning of the s-th supernode.
e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
xsup 0 1 2 4 7 12
Note: dfs will be performed on supernode rep. relative to the new
row pivoting ordering</pre><p>
<pre> (xlsub,lsub): lsub[*] contains the compressed subscript of
rectangular supernodes; xlsub[j] points to the starting
location of the j-th column in lsub[*]. Note that xlsub
is indexed by column.
Storage: original row subscripts</pre><p>
<pre> During the course of sparse LU factorization, we also use
(xlsub,lsub) for the purpose of symmetric pruning. For each
supernode {s,s+1,...,t=s+r} with first column s and last
column t, the subscript set
lsub[j], j=xlsub[s], .., xlsub[s+1]-1
is the structure of column s (i.e. structure of this supernode).
It is used for the storage of numerical values.
Furthermore,
lsub[j], j=xlsub[t], .., xlsub[t+1]-1
is the structure of the last column t of this supernode.
It is for the purpose of symmetric pruning. Therefore, the
structural subscripts can be rearranged without making physical
interchanges among the numerical values.</pre><p>
<pre> However, if the supernode has only one column, then we
only keep one set of subscripts. For any subscript interchange
performed, similar interchange must be done on the numerical
values.</pre><p>
<pre> The last column structures (for pruning) will be removed
after the numercial LU factorization phase.</pre><p>
<pre> (xlusup,lusup): lusup[*] contains the numerical values of the
rectangular supernodes; xlusup[j] points to the starting
location of the j-th column in storage vector lusup[*]
Note: xlusup is indexed by column.
Each rectangular supernode is stored by column-major
scheme, consistent with Fortran 2-dim array storage.</pre><p>
<pre> (xusub,ucol,usub): ucol[*] stores the numerical values of
U-columns outside the rectangular supernodes. The row
subscript of nonzero ucol[k] is stored in usub[k].
xusub[i] points to the starting location of column i in ucol.
Storage: new row subscripts; that is subscripts of PA.
</pre> <hr><h2>Typedef Documentation</h2>
<a class="anchor" name="b6fd6105e64ed14a0c9281326f05e623"></a><!-- doxytag: member="slu_sdefs.h::int_t" ref="b6fd6105e64ed14a0c9281326f05e623" args="" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">typedef int <a class="el" href="slu__zdefs_8h.html#b6fd6105e64ed14a0c9281326f05e623">int_t</a> </td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<hr><h2>Function Documentation</h2>
<a class="anchor" name="46e1e8ccffc9a076461dbd042ae91654"></a><!-- doxytag: member="slu_sdefs.h::check_tempv" ref="46e1e8ccffc9a076461dbd042ae91654" args="(int, float *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void check_tempv </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="8086902aa8be3fc7d04c3c82ec3a79dc"></a><!-- doxytag: member="slu_sdefs.h::countnz" ref="8086902aa8be3fc7d04c3c82ec3a79dc" args="(const int, int *, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void countnz </td>
<td>(</td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="7061332d759d7e4d73c1b2e5cb0bf2bf"></a><!-- doxytag: member="slu_sdefs.h::fixupL" ref="7061332d759d7e4d73c1b2e5cb0bf2bf" args="(const int, const int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void fixupL </td>
<td>(</td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="3e1230bff11a9e47c35555299bcdcf1b"></a><!-- doxytag: member="slu_sdefs.h::floatCalloc" ref="3e1230bff11a9e47c35555299bcdcf1b" args="(int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float* floatCalloc </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname"> </td>
<td> ) </td>
<td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="42361c3ce2ba81d149ffba01fbd6f138"></a><!-- doxytag: member="slu_sdefs.h::floatMalloc" ref="42361c3ce2ba81d149ffba01fbd6f138" args="(int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float* floatMalloc </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname"> </td>
<td> ) </td>
<td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="ae8eb367a0a2fcdf734738bc9630df85"></a><!-- doxytag: member="slu_sdefs.h::ilu_countnz" ref="ae8eb367a0a2fcdf734738bc9630df85" args="(const int, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void ilu_countnz </td>
<td>(</td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="ab2366ea3e2cdcbf51b976432fc43616"></a><!-- doxytag: member="slu_sdefs.h::ilu_scolumn_dfs" ref="ab2366ea3e2cdcbf51b976432fc43616" args="(const int, const int, int *, int *, int *, int *, int *, int *, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ilu_scolumn_dfs </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>lsub_col</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>parent</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xplore</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
ILU_SCOLUMN_DFS performs a symbolic factorization on column jcol, and
decide the supernode boundary.</pre><p>
<pre> This routine does not use numeric values, but only use the RHS
row indices to start the dfs.</pre><p>
<pre> A supernode representative is the last column of a supernode.
The nonzeros in U[*,j] are segments that end at supernodal
representatives. The routine returns a list of such supernodal
representatives in topological order of the dfs that generates them.
The location of the first nonzero in each such supernodal segment
(supernodal entry location) is also returned.</pre><p>
<pre> Local parameters
================
nseg: no of segments in current U[*,j]
jsuper: jsuper=EMPTY if column j does not belong to the same
supernode as j-1. Otherwise, jsuper=nsuper.</pre><p>
<pre> marker2: A-row --> A-row/col (0/1)
repfnz: SuperA-col --> PA-row
parent: SuperA-col --> SuperA-col
xplore: SuperA-col --> index to L-structure</pre><p>
<pre> Return value
============
0 success;
> 0 number of bytes allocated when run out of space.
</pre>
</div>
</div><p>
<a class="anchor" name="35a18be483569110edc1665d13e260e3"></a><!-- doxytag: member="slu_sdefs.h::ilu_scopy_to_ucol" ref="35a18be483569110edc1665d13e260e3" args="(int, int, int *, int *, int *, float *, int, milu_t, double, int, float *, int *, GlobalLU_t *, float *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ilu_scopy_to_ucol </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#0cb73c13a7c2390c3a9a0a8913477ff0">milu_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="5f5e67d3b2d715a388ca99bb28387fb9"></a><!-- doxytag: member="slu_sdefs.h::ilu_sdrop_row" ref="5f5e67d3b2d715a388ca99bb28387fb9" args="(superlu_options_t *, int, int, double, int, int *, double *, GlobalLU_t *, float *, float *, int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ilu_sdrop_row </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="a91b3297a15ace9ac5abd65c5e708f2d"></a><!-- doxytag: member="slu_sdefs.h::ilu_spanel_dfs" ref="a91b3297a15ace9ac5abd65c5e708f2d" args="(const int, const int, const int, SuperMatrix *, int *, int *, float *, float *, int *, int *, int *, int *, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void ilu_spanel_dfs </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>w</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>dense</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>amax</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>panel_lsub</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>parent</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xplore</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> Performs a symbolic factorization on a panel of columns [jcol, jcol+w).</pre><p>
<pre> A supernode representative is the last column of a supernode.
The nonzeros in U[*,j] are segments that end at supernodal
representatives.</pre><p>
<pre> The routine returns one list of the supernodal representatives
in topological order of the dfs that generates them. This list is
a superset of the topological order of each individual column within
the panel.
The location of the first nonzero in each supernodal segment
(supernodal entry location) is also returned. Each column has a
separate list for this purpose.</pre><p>
<pre> Two marker arrays are used for dfs:
marker[i] == jj, if i was visited during dfs of current column jj;
marker1[i] >= jcol, if i was visited by earlier columns in this panel;</pre><p>
<pre> marker: A-row --> A-row/col (0/1)
repfnz: SuperA-col --> PA-row
parent: SuperA-col --> SuperA-col
xplore: SuperA-col --> index to L-structure
</pre>
</div>
</div><p>
<a class="anchor" name="b7f61e0a95c151f53f8a400bc9c6192e"></a><!-- doxytag: member="slu_sdefs.h::ilu_spivotL" ref="b7f61e0a95c151f53f8a400bc9c6192e" args="(const int, const double, int *, int *, int, int *, int *, int *, int *, double, milu_t, float, GlobalLU_t *, SuperLUStat_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ilu_spivotL </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>u</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>usepr</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>diagind</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>swap</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>iswap</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>pivrow</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>fill_tol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#0cb73c13a7c2390c3a9a0a8913477ff0">milu_t</a> </td>
<td class="paramname"> <em>milu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>drop_sum</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
Performs the numerical pivoting on the current column of L,
and the CDIV operation.</pre><p>
<pre> Pivot policy:
(1) Compute thresh = u * max_(i>=j) <a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_ij)</a>;
(2) IF user specifies pivot row k and <a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_kj)</a> >= thresh THEN
pivot row = k;
ELSE IF <a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_jj)</a> >= thresh THEN
pivot row = j;
ELSE
pivot row = m;</pre><p>
<pre> Note: If you absolutely want to use a given pivot order, then set u=0.0.</pre><p>
<pre> Return value: 0 success;
i > 0 U(i,i) is exactly zero.
</pre>
</div>
</div><p>
<a class="anchor" name="db260ae3f26e2179b1cf33c3e754d6f1"></a><!-- doxytag: member="slu_sdefs.h::ilu_sQuerySpace" ref="db260ae3f26e2179b1cf33c3e754d6f1" args="(SuperMatrix *, SuperMatrix *, mem_usage_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ilu_sQuerySpace </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structmem__usage__t.html">mem_usage_t</a> * </td>
<td class="paramname"> <em>mem_usage</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
mem_usage consists of the following fields:<ul>
<li>for_lu (float)
The amount of space used in bytes for the L data structures.</li><li>total_needed (float)
The amount of space needed in bytes to perform factorization.
</li></ul>
</pre>
</div>
</div><p>
<a class="anchor" name="714eccb6cd0fb1fc0920e8a52489f1a5"></a><!-- doxytag: member="slu_sdefs.h::ilu_ssnode_dfs" ref="714eccb6cd0fb1fc0920e8a52489f1a5" args="(const int, const int, const int *, const int *, const int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ilu_ssnode_dfs </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>kcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>asub</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>xa_begin</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>xa_end</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
<a class="el" href="ilu__ssnode__dfs_8c.html#510a9174e442a65aaa83f9ce97390f85">ilu_ssnode_dfs()</a> - Determine the union of the row structures of those
columns within the relaxed snode.
Note: The relaxed snodes are leaves of the supernodal etree, therefore,
the portion outside the rectangular supernode must be zero.</pre><p>
<pre> Return value
============
0 success;
>0 number of bytes allocated when run out of memory.
</pre>
</div>
</div><p>
<a class="anchor" name="ad0c06e9adc1e29a0ab2e78c38119bb4"></a><!-- doxytag: member="slu_sdefs.h::print_double_vec" ref="ad0c06e9adc1e29a0ab2e78c38119bb4" args="(char *, int, double *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int print_double_vec </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="dca8047332d0b0c161945583ecb3435d"></a><!-- doxytag: member="slu_sdefs.h::PrintPerf" ref="dca8047332d0b0c161945583ecb3435d" args="(SuperMatrix *, SuperMatrix *, mem_usage_t *, float, float, float *, float *, char *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void PrintPerf </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structmem__usage__t.html">mem_usage_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="aef6f98786d0bd76103237385ddbeb9f"></a><!-- doxytag: member="slu_sdefs.h::sallocateA" ref="aef6f98786d0bd76103237385ddbeb9f" args="(int, int, float **, int **, int **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sallocateA </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="e21004feb23626f7ea648b46657a257a"></a><!-- doxytag: member="slu_sdefs.h::scolumn_bmod" ref="e21004feb23626f7ea648b46657a257a" args="(const int, const int, float *, float *, int *, int *, int, GlobalLU_t *, SuperLUStat_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int scolumn_bmod </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>dense</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>tempv</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>fpanelc</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose:
========
Performs numeric block updates (sup-col) in topological order.
It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
Special processing on the supernodal portion of L[*,j]
Return value: 0 - successful return
> 0 - number of bytes allocated when run out of space
</pre>
</div>
</div><p>
<a class="anchor" name="20dc9300377cb7240572ba34a31af3d1"></a><!-- doxytag: member="slu_sdefs.h::scolumn_dfs" ref="20dc9300377cb7240572ba34a31af3d1" args="(const int, const int, int *, int *, int *, int *, int *, int *, int *, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int scolumn_dfs </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>lsub_col</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xprune</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>parent</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xplore</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
SCOLUMN_DFS performs a symbolic factorization on column jcol, and
decide the supernode boundary.</pre><p>
<pre> This routine does not use numeric values, but only use the RHS
row indices to start the dfs.</pre><p>
<pre> A supernode representative is the last column of a supernode.
The nonzeros in U[*,j] are segments that end at supernodal
representatives. The routine returns a list of such supernodal
representatives in topological order of the dfs that generates them.
The location of the first nonzero in each such supernodal segment
(supernodal entry location) is also returned.</pre><p>
<pre> Local parameters
================
nseg: no of segments in current U[*,j]
jsuper: jsuper=EMPTY if column j does not belong to the same
supernode as j-1. Otherwise, jsuper=nsuper.</pre><p>
<pre> marker2: A-row --> A-row/col (0/1)
repfnz: SuperA-col --> PA-row
parent: SuperA-col --> SuperA-col
xplore: SuperA-col --> index to L-structure</pre><p>
<pre> Return value
============
0 success;
> 0 number of bytes allocated when run out of space.
</pre>
</div>
</div><p>
<a class="anchor" name="ef4be8ddf6a62ef48ca8dfc3a6992634"></a><!-- doxytag: member="slu_sdefs.h::sCompRow_to_CompCol" ref="ef4be8ddf6a62ef48ca8dfc3a6992634" args="(int, int, int, float *, int *, int *, float **, int **, int **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCompRow_to_CompCol </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="7369dba9a8c3e34a27bdc9eba73cbe3e"></a><!-- doxytag: member="slu_sdefs.h::sCopy_CompCol_Matrix" ref="7369dba9a8c3e34a27bdc9eba73cbe3e" args="(SuperMatrix *, SuperMatrix *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCopy_CompCol_Matrix </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="5ef26ab4351b4ab39c2ef3d0ff5d6cb5"></a><!-- doxytag: member="slu_sdefs.h::sCopy_Dense_Matrix" ref="5ef26ab4351b4ab39c2ef3d0ff5d6cb5" args="(int, int, float *, int, float *, int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCopy_Dense_Matrix </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<p>
Copies a two-dimensional matrix X to another matrix Y.
</div>
</div><p>
<a class="anchor" name="249a312149bcf091fcc8adbd0c536cb2"></a><!-- doxytag: member="slu_sdefs.h::scopy_to_ucol" ref="249a312149bcf091fcc8adbd0c536cb2" args="(int, int, int *, int *, int *, float *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int scopy_to_ucol </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="bb3d30eea43abc536793244e7564e70d"></a><!-- doxytag: member="slu_sdefs.h::sCreate_CompCol_Matrix" ref="bb3d30eea43abc536793244e7564e70d" args="(SuperMatrix *, int, int, int, float *, int *, int *, Stype_t, Dtype_t, Mtype_t)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCreate_CompCol_Matrix </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a> </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="77496309d539716f616365a2515aa653"></a><!-- doxytag: member="slu_sdefs.h::sCreate_CompRow_Matrix" ref="77496309d539716f616365a2515aa653" args="(SuperMatrix *, int, int, int, float *, int *, int *, Stype_t, Dtype_t, Mtype_t)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCreate_CompRow_Matrix </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a> </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="ca98118f5539f098beff0b70c041c2e6"></a><!-- doxytag: member="slu_sdefs.h::sCreate_Dense_Matrix" ref="ca98118f5539f098beff0b70c041c2e6" args="(SuperMatrix *, int, int, float *, int, Stype_t, Dtype_t, Mtype_t)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCreate_Dense_Matrix </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a> </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="f4386b0d87e1c8886b58fcf9d243bc12"></a><!-- doxytag: member="slu_sdefs.h::sCreate_SuperNode_Matrix" ref="f4386b0d87e1c8886b58fcf9d243bc12" args="(SuperMatrix *, int, int, int, float *, int *, int *, int *, int *, int *, Stype_t, Dtype_t, Mtype_t)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sCreate_SuperNode_Matrix </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#9d2ddedeb2a3d92e950811c61d0b8796">Stype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#7987cb2a28ec879b39a90e9e48e29190">Dtype_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="supermatrix_8h.html#5962adac634f3feebe487ad443802d60">Mtype_t</a> </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="2d734e40276e89a3ef04bf79bc21acb6"></a><!-- doxytag: member="slu_sdefs.h::sfill" ref="2d734e40276e89a3ef04bf79bc21acb6" args="(float *, int, float)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sfill </td>
<td>(</td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="c8b784b5551863e8d50047ee280c34cf"></a><!-- doxytag: member="slu_sdefs.h::sFillRHS" ref="c8b784b5551863e8d50047ee280c34cf" args="(trans_t, int, float *, int, SuperMatrix *, SuperMatrix *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sFillRHS </td>
<td>(</td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#0c4e17b2d5cea33f9991ccc6a6678d62">trans_t</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="b79adc3c2d496feb17f359aa303211fc"></a><!-- doxytag: member="slu_sdefs.h::sGenXtrue" ref="b79adc3c2d496feb17f359aa303211fc" args="(int, int, float *, int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sGenXtrue </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="1c910cf12639a22a03727ad204575b3b"></a><!-- doxytag: member="slu_sdefs.h::sgscon" ref="1c910cf12639a22a03727ad204575b3b" args="(char *, SuperMatrix *, SuperMatrix *, float, float *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgscon </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>norm</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>anorm</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>rcond</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSCON estimates the reciprocal of the condition number of a general
real matrix A, in either the 1-norm or the infinity-norm, using
the LU factorization computed by SGETRF. *</pre><p>
<pre> An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> NORM (input) char*
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.</pre><p>
<pre> L (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U as computed by
<a class="el" href="sgstrf_8c.html#2428d5d7ef46cf9a08069d9f55901284">sgstrf()</a>. Use compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U as computed by
<a class="el" href="sgstrf_8c.html#2428d5d7ef46cf9a08069d9f55901284">sgstrf()</a>. Use column-wise storage scheme, i.e., U has types:
Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> ANORM (input) float
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.</pre><p>
<pre> RCOND (output) float*
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).</pre><p>
<pre> INFO (output) int*
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value</pre><p>
<pre> =====================================================================
</pre>
</div>
</div><p>
<a class="anchor" name="3dbdb406f2fb8b186f0f8d3a4cd2d60d"></a><!-- doxytag: member="slu_sdefs.h::sgsequ" ref="3dbdb406f2fb8b186f0f8d3a4cd2d60d" args="(SuperMatrix *, float *, float *, float *, float *, float *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgsequ </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>rowcnd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>colcnd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>amax</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSEQU computes row and column scalings intended to equilibrate an
M-by-N sparse matrix A and reduce its condition number. R returns the row
scale factors and C the column scale factors, chosen to try to make
the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.</pre><p>
<pre> R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> A (input) SuperMatrix*
The matrix of dimension (A->nrow, A->ncol) whose equilibration
factors are to be computed. The type of A can be:
Stype = SLU_NC; Dtype = SLU_S; Mtype = SLU_GE.</pre><p>
<pre> R (output) float*, size A->nrow
If INFO = 0 or INFO > M, R contains the row scale factors
for A.</pre><p>
<pre> C (output) float*, size A->ncol
If INFO = 0, C contains the column scale factors for A.</pre><p>
<pre> ROWCND (output) float*
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.</pre><p>
<pre> COLCND (output) float*
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.</pre><p>
<pre> AMAX (output) float*
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.</pre><p>
<pre> INFO (output) int*
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= A->nrow: the i-th row of A is exactly zero
> A->ncol: the (i-M)-th column of A is exactly zero</pre><p>
<pre> =====================================================================
</pre>
</div>
</div><p>
<a class="anchor" name="ff6cdbb84f0fbd4cbce7a64ea1f7eb20"></a><!-- doxytag: member="slu_sdefs.h::sgsisv" ref="ff6cdbb84f0fbd4cbce7a64ea1f7eb20" args="(superlu_options_t *, SuperMatrix *, int *, int *, SuperMatrix *, SuperMatrix *, SuperMatrix *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgsisv </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="b57375a81b174861bcb68ed11861a4f5"></a><!-- doxytag: member="slu_sdefs.h::sgsisx" ref="b57375a81b174861bcb68ed11861a4f5" args="(superlu_options_t *, SuperMatrix *, int *, int *, int *, char *, float *, float *, SuperMatrix *, SuperMatrix *, void *, int, SuperMatrix *, SuperMatrix *, float *, float *, mem_usage_t *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgsisx </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname"> <em>options</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>etree</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>equed</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>R</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>C</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">void * </td>
<td class="paramname"> <em>work</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>lwork</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>B</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>X</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>recip_pivot_growth</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>rcond</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structmem__usage__t.html">mem_usage_t</a> * </td>
<td class="paramname"> <em>mem_usage</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSISX computes an approximate solutions of linear equations
A*X=B or A'*X=B, using the ILU factorization from <a class="el" href="sgsitrf_8c.html#25788392a605519048cafa995b641fcc">sgsitrf()</a>.
An estimation of the condition number is provided.
The routine performs the following steps:</pre><p>
<pre> 1. If A is stored column-wise (A->Stype = SLU_NC):</pre><p>
<pre> 1.1. If options->Equil = YES or options->RowPerm = LargeDiag, scaling
factors are computed to equilibrate the system:
options->Trans = NOTRANS:
diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
options->Trans = TRANS:
(diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
options->Trans = CONJ:
(diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B
(if options->Trans=NOTRANS) or diag(C)*B (if options->Trans
= TRANS or CONJ).</pre><p>
<pre> 1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
matrix that usually preserves sparsity.
For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre> 1.3. If options->Fact != FACTORED, the LU decomposition is used to
factor the matrix A (after equilibration if options->Equil = YES)
as Pr*A*Pc = L*U, with Pr determined by partial pivoting.</pre><p>
<pre> 1.4. Compute the reciprocal pivot growth factor.</pre><p>
<pre> 1.5. If some U(i,i) = 0, so that U is exactly singular, then the
routine fills a small number on the diagonal entry, that is
U(i,i) = ||A(:,i)||_oo * options->ILU_FillTol ** (1 - i / n),
and info will be increased by 1. The factored form of A is used
to estimate the condition number of the preconditioner. If the
reciprocal of the condition number is less than machine precision,
info = A->ncol+1 is returned as a warning, but the routine still
goes on to solve for X.</pre><p>
<pre> 1.6. The system of equations is solved for X using the factored form
of A.</pre><p>
<pre> 1.7. options->IterRefine is not used</pre><p>
<pre> 1.8. If equilibration was used, the matrix X is premultiplied by
diag(C) (if options->Trans = NOTRANS) or diag(R)
(if options->Trans = TRANS or CONJ) so that it solves the
original system before equilibration.</pre><p>
<pre> 1.9. options for ILU only
1) If options->RowPerm = LargeDiag, MC64 is used to scale and
permute the matrix to an I-matrix, that is Pr*Dr*A*Dc has
entries of modulus 1 on the diagonal and off-diagonal entries
of modulus at most 1. If MC64 fails, <a class="el" href="dgsequ_8c.html#af22b247cc134fb0ba90285e84ccebb4" title="Driver related.">dgsequ()</a> is used to
equilibrate the system.
( Default: LargeDiag )
2) options->ILU_DropTol = tau is the threshold for dropping.
For L, it is used directly (for the whole row in a supernode);
For U, ||A(:,i)||_oo * tau is used as the threshold
for the i-th column.
If a secondary dropping rule is required, tau will
also be used to compute the second threshold.
( Default: 1e-4 )
3) options->ILU_FillFactor = gamma, used as the initial guess
of memory growth.
If a secondary dropping rule is required, it will also
be used as an upper bound of the memory.
( Default: 10 )
4) options->ILU_DropRule specifies the dropping rule.
Option Meaning
====== ===========
DROP_BASIC: Basic dropping rule, supernodal based ILUTP(tau).
DROP_PROWS: Supernodal based ILUTP(p,tau), p = gamma*nnz(A)/n.
DROP_COLUMN: Variant of ILUTP(p,tau), for j-th column,
p = gamma * nnz(A(:,j)).
DROP_AREA: Variation of ILUTP, for j-th column, use
nnz(F(:,1:j)) / nnz(A(:,1:j)) to control memory.
DROP_DYNAMIC: Modify the threshold tau during factorizaion:
If nnz(L(:,1:j)) / nnz(A(:,1:j)) > gamma
tau_L(j) := MIN(tau_0, tau_L(j-1) * 2);
Otherwise
tau_L(j) := MAX(tau_0, tau_L(j-1) / 2);
tau_U(j) uses the similar rule.
NOTE: the thresholds used by L and U are separate.
DROP_INTERP: Compute the second dropping threshold by
interpolation instead of sorting (default).
In this case, the actual fill ratio is not
guaranteed smaller than gamma.
DROP_PROWS, DROP_COLUMN and DROP_AREA are mutually exclusive.
( Default: DROP_BASIC | DROP_AREA )
5) options->ILU_Norm is the criterion of measuring the magnitude
of a row in a supernode of L. ( Default is INF_NORM )
options->ILU_Norm RowSize(x[1:n])
================= ===============
ONE_NORM ||x||_1 / n
TWO_NORM ||x||_2 / sqrt(n)
INF_NORM max{|x[i]|}
6) options->ILU_MILU specifies the type of MILU's variation.
= SILU: do not perform Modified ILU;
= SMILU_1 (not recommended):
U(i,i) := U(i,i) + sum(dropped entries);
= SMILU_2:
U(i,i) := U(i,i) + SGN(U(i,i)) * sum(dropped entries);
= SMILU_3:
U(i,i) := U(i,i) + SGN(U(i,i)) * sum(|dropped entries|);
NOTE: Even SMILU_1 does not preserve the column sum because of
late dropping.
( Default: SILU )
7) options->ILU_FillTol is used as the perturbation when
encountering zero pivots. If some U(i,i) = 0, so that U is
exactly singular, then
U(i,i) := ||A(:,i)|| * options->ILU_FillTol ** (1 - i / n).
( Default: 1e-2 )</pre><p>
<pre> 2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm
to the transpose of A:</pre><p>
<pre> 2.1. If options->Equil = YES or options->RowPerm = LargeDiag, scaling
factors are computed to equilibrate the system:
options->Trans = NOTRANS:
diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
options->Trans = TRANS:
(diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
options->Trans = CONJ:
(diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A' is
overwritten by diag(R)*A'*diag(C) and B by diag(R)*B
(if trans='N') or diag(C)*B (if trans = 'T' or 'C').</pre><p>
<pre> 2.2. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc, where Pc is a permutation matrix that
usually preserves sparsity.
For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre> 2.3. If options->Fact != FACTORED, the LU decomposition is used to
factor the transpose(A) (after equilibration if
options->Fact = YES) as Pr*transpose(A)*Pc = L*U with the
permutation Pr determined by partial pivoting.</pre><p>
<pre> 2.4. Compute the reciprocal pivot growth factor.</pre><p>
<pre> 2.5. If some U(i,i) = 0, so that U is exactly singular, then the
routine fills a small number on the diagonal entry, that is
U(i,i) = ||A(:,i)||_oo * options->ILU_FillTol ** (1 - i / n).
And info will be increased by 1. The factored form of A is used
to estimate the condition number of the preconditioner. If the
reciprocal of the condition number is less than machine precision,
info = A->ncol+1 is returned as a warning, but the routine still
goes on to solve for X.</pre><p>
<pre> 2.6. The system of equations is solved for X using the factored form
of transpose(A).</pre><p>
<pre> 2.7. If options->IterRefine is not used.</pre><p>
<pre> 2.8. If equilibration was used, the matrix X is premultiplied by
diag(C) (if options->Trans = NOTRANS) or diag(R)
(if options->Trans = TRANS or CONJ) so that it solves the
original system before equilibration.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> options (input) superlu_options_t*
The structure defines the input parameters to control
how the LU decomposition will be performed and how the
system will be solved.</pre><p>
<pre> A (input/output) SuperMatrix*
Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
of the linear equations is A->nrow. Currently, the type of A can be:
Stype = SLU_NC or SLU_NR, Dtype = SLU_S, Mtype = SLU_GE.
In the future, more general A may be handled.</pre><p>
<pre> On entry, If options->Fact = FACTORED and equed is not 'N',
then A must have been equilibrated by the scaling factors in
R and/or C.
On exit, A is not modified
if options->Equil = NO, or
if options->Equil = YES but equed = 'N' on exit, or
if options->RowPerm = NO.</pre><p>
<pre> Otherwise, if options->Equil = YES and equed is not 'N',
A is scaled as follows:
If A->Stype = SLU_NC:
equed = 'R': A := diag(R) * A
equed = 'C': A := A * diag(C)
equed = 'B': A := diag(R) * A * diag(C).
If A->Stype = SLU_NR:
equed = 'R': transpose(A) := diag(R) * transpose(A)
equed = 'C': transpose(A) := transpose(A) * diag(C)
equed = 'B': transpose(A) := diag(R) * transpose(A) * diag(C).</pre><p>
<pre> If options->RowPerm = LargeDiag, MC64 is used to scale and permute
the matrix to an I-matrix, that is A is modified as follows:
P*Dr*A*Dc has entries of modulus 1 on the diagonal and
off-diagonal entries of modulus at most 1. P is a permutation
obtained from MC64.
If MC64 fails, <a class="el" href="sgsequ_8c.html#d8a808e807e38c32c08cfbeadb088f08" title="Driver related.">sgsequ()</a> is used to equilibrate the system,
and A is scaled as above, there is no permutation involved.</pre><p>
<pre> perm_c (input/output) int*
If A->Stype = SLU_NC, Column permutation vector of size A->ncol,
which defines the permutation matrix Pc; perm_c[i] = j means
column i of A is in position j in A*Pc.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.</pre><p>
<pre> If A->Stype = SLU_NR, column permutation vector of size A->nrow,
which describes permutation of columns of transpose(A)
(rows of A) as described above.</pre><p>
<pre> perm_r (input/output) int*
If A->Stype = SLU_NC, row permutation vector of size A->nrow,
which defines the permutation matrix Pr, and is determined
by partial pivoting. perm_r[i] = j means row i of A is in
position j in Pr*A.</pre><p>
<pre> If A->Stype = SLU_NR, permutation vector of size A->ncol, which
determines permutation of rows of transpose(A)
(columns of A) as described above.</pre><p>
<pre> If options->Fact = SamePattern_SameRowPerm, the pivoting routine
will try to use the input perm_r, unless a certain threshold
criterion is violated. In that case, perm_r is overwritten by a
new permutation determined by partial pivoting or diagonal
threshold pivoting.
Otherwise, perm_r is output argument.</pre><p>
<pre> etree (input/output) int*, dimension (A->ncol)
Elimination tree of Pc'*A'*A*Pc.
If options->Fact != FACTORED and options->Fact != DOFACT,
etree is an input argument, otherwise it is an output argument.
Note: etree is a vector of parent pointers for a forest whose
vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.</pre><p>
<pre> equed (input/output) char*
Specifies the form of equilibration that was done.
= 'N': No equilibration.
= 'R': Row equilibration, i.e., A was premultiplied by diag(R).
= 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
= 'B': Both row and column equilibration, i.e., A was replaced
by diag(R)*A*diag(C).
If options->Fact = FACTORED, equed is an input argument,
otherwise it is an output argument.</pre><p>
<pre> R (input/output) float*, dimension (A->nrow)
The row scale factors for A or transpose(A).
If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
(if A->Stype = SLU_NR) is multiplied on the left by diag(R).
If equed = 'N' or 'C', R is not accessed.
If options->Fact = FACTORED, R is an input argument,
otherwise, R is output.
If options->zFact = FACTORED and equed = 'R' or 'B', each element
of R must be positive.</pre><p>
<pre> C (input/output) float*, dimension (A->ncol)
The column scale factors for A or transpose(A).
If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
(if A->Stype = SLU_NR) is multiplied on the right by diag(C).
If equed = 'N' or 'R', C is not accessed.
If options->Fact = FACTORED, C is an input argument,
otherwise, C is output.
If options->Fact = FACTORED and equed = 'C' or 'B', each element
of C must be positive.</pre><p>
<pre> L (output) SuperMatrix*
The factor L from the factorization
Pr*A*Pc=L*U (if A->Stype SLU_= NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (output) SuperMatrix*
The factor U from the factorization
Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
Uses column-wise storage scheme, i.e., U has types:
Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> work (workspace/output) void*, size (lwork) (in bytes)
User supplied workspace, should be large enough
to hold data structures for factors L and U.
On exit, if fact is not 'F', L and U point to this array.</pre><p>
<pre> lwork (input) int
Specifies the size of work array in bytes.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,
returns error if space runs out.
= -1: the routine guesses the amount of space needed without
performing the factorization, and returns it in
mem_usage->total_needed; no other side effects.</pre><p>
<pre> See argument 'mem_usage' for memory usage statistics.</pre><p>
<pre> B (input/output) SuperMatrix*
B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
On entry, the right hand side matrix.
If B->ncol = 0, only LU decomposition is performed, the triangular
solve is skipped.
On exit,
if equed = 'N', B is not modified; otherwise
if A->Stype = SLU_NC:
if options->Trans = NOTRANS and equed = 'R' or 'B',
B is overwritten by diag(R)*B;
if options->Trans = TRANS or CONJ and equed = 'C' of 'B',
B is overwritten by diag(C)*B;
if A->Stype = SLU_NR:
if options->Trans = NOTRANS and equed = 'C' or 'B',
B is overwritten by diag(C)*B;
if options->Trans = TRANS or CONJ and equed = 'R' of 'B',
B is overwritten by diag(R)*B.</pre><p>
<pre> If options->RowPerm = LargeDiag, MC64 is used to scale and permute
the matrix A to an I-matrix. Then, in addition to the scaling
above, B is further permuted by P*B if options->Trans = NOTRANS,
where P is obtained from MC64.</pre><p>
<pre> X (output) SuperMatrix*
X has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
If info = 0 or info = A->ncol+1, X contains the solution matrix
to the original system of equations. Note that A and B are modified
on exit if equed is not 'N', and the solution to the equilibrated
system is inv(diag(C))*X if options->Trans = NOTRANS and
equed = 'C' or 'B', or inv(diag(R))*X if options->Trans = 'T' or 'C'
and equed = 'R' or 'B'.</pre><p>
<pre> recip_pivot_growth (output) float*
The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
The infinity norm is used. If recip_pivot_growth is much less
than 1, the stability of the LU factorization could be poor.</pre><p>
<pre> rcond (output) float*
The estimate of the reciprocal condition number of the matrix A
after equilibration (if done). If rcond is less than the machine
precision (in particular, if rcond = 0), the matrix is singular
to working precision. This condition is indicated by a return
code of info > 0.</pre><p>
<pre> mem_usage (output) mem_usage_t*
Record the memory usage statistics, consisting of following fields:<ul>
<li>for_lu (float)
The amount of space used in bytes for L data structures.</li><li>total_needed (float)
The amount of space needed in bytes to perform factorization.</li><li>expansions (int)
The number of memory expansions during the LU factorization.</li></ul>
</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See <a class="el" href="slu__util_8h.html" title="Utility header file.">slu_util.h</a> for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is
<= A->ncol: number of zero pivots. They are replaced by small
entries due to options->ILU_FillTol.
= A->ncol+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular to
working precision. Nevertheless, the solution and
error bounds are computed because there are a number
of situations where the computed solution can be more
accurate than the value of RCOND would suggest.
> A->ncol+1: number of bytes allocated when memory allocation
failure occurred, plus A->ncol.
</pre>
</div>
</div><p>
<a class="anchor" name="22204c4186c4412ee33cd16285ee6bb0"></a><!-- doxytag: member="slu_sdefs.h::sgsitrf" ref="22204c4186c4412ee33cd16285ee6bb0" args="(superlu_options_t *, SuperMatrix *, int, int, int *, void *, int, int *, int *, SuperMatrix *, SuperMatrix *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgsitrf </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname"> <em>options</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>relax</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>panel_size</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>etree</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">void * </td>
<td class="paramname"> <em>work</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>lwork</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSITRF computes an ILU factorization of a general sparse m-by-n
matrix A using partial pivoting with row interchanges.
The factorization has the form
Pr * A = L * U
where Pr is a row permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
triangular (upper trapezoidal if A->nrow < A->ncol).</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> options (input) superlu_options_t*
The structure defines the input parameters to control
how the ILU decomposition will be performed.</pre><p>
<pre> A (input) SuperMatrix*
Original matrix A, permuted by columns, of dimension
(A->nrow, A->ncol). The type of A can be:
Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.</pre><p>
<pre> relax (input) int
To control degree of relaxing supernodes. If the number
of nodes (columns) in a subtree of the elimination tree is less
than relax, this subtree is considered as one supernode,
regardless of the row structures of those columns.</pre><p>
<pre> panel_size (input) int
A panel consists of at most panel_size consecutive columns.</pre><p>
<pre> etree (input) int*, dimension (A->ncol)
Elimination tree of A'*A.
Note: etree is a vector of parent pointers for a forest whose
vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
On input, the columns of A should be permuted so that the
etree is in a certain postorder.</pre><p>
<pre> work (input/output) void*, size (lwork) (in bytes)
User-supplied work space and space for the output data structures.
Not referenced if lwork = 0;</pre><p>
<pre> lwork (input) int
Specifies the size of work array in bytes.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,
returns error if space runs out.
= -1: the routine guesses the amount of space needed without
performing the factorization, and returns it in
*info; no other side effects.</pre><p>
<pre> perm_c (input) int*, dimension (A->ncol)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.
When searching for diagonal, perm_c[*] is applied to the
row subscripts of A, so that diagonal threshold pivoting
can find the diagonal of A, rather than that of A*Pc.</pre><p>
<pre> perm_r (input/output) int*, dimension (A->nrow)
Row permutation vector which defines the permutation matrix Pr,
perm_r[i] = j means row i of A is in position j in Pr*A.
If options->Fact = SamePattern_SameRowPerm, the pivoting routine
will try to use the input perm_r, unless a certain threshold
criterion is violated. In that case, perm_r is overwritten by
a new permutation determined by partial pivoting or diagonal
threshold pivoting.
Otherwise, perm_r is output argument;</pre><p>
<pre> L (output) SuperMatrix*
The factor L from the factorization Pr*A=L*U; use compressed row
subscripts storage for supernodes, i.e., L has type:
Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (output) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
storage scheme, i.e., U has types: Stype = SLU_NC,
Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See <a class="el" href="slu__util_8h.html" title="Utility header file.">slu_util.h</a> for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is
<= A->ncol: number of zero pivots. They are replaced by small
entries according to options->ILU_FillTol.
> A->ncol: number of bytes allocated when memory allocation
failure occurred, plus A->ncol. If lwork = -1, it is
the estimated amount of space needed, plus A->ncol.</pre><p>
<pre> ======================================================================</pre><p>
<pre> Local Working Arrays:
======================
m = number of rows in the matrix
n = number of columns in the matrix</pre><p>
<pre> marker[0:3*m-1]: marker[i] = j means that node i has been
reached when working on column j.
Storage: relative to original row subscripts
NOTE: There are 4 of them:
marker/marker1 are used for panel dfs, see (ilu_)<a class="el" href="dpanel__dfs_8c.html" title="Peforms a symbolic factorization on a panel of symbols.">dpanel_dfs.c</a>;
marker2 is used for inner-factorization, see (ilu)_dcolumn_dfs.c;
marker_relax(has its own space) is used for relaxed supernodes.</pre><p>
<pre> parent[0:m-1]: parent vector used during dfs
Storage: relative to new row subscripts</pre><p>
<pre> xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
unexplored neighbor of i in lsub[*]</pre><p>
<pre> segrep[0:nseg-1]: contains the list of supernodal representatives
in topological order of the dfs. A supernode representative is the
last column of a supernode.
The maximum size of segrep[] is n.</pre><p>
<pre> repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
supernodal representative r, repfnz[r] is the location of the first
nonzero in this segment. It is also used during the dfs: repfnz[r]>0
indicates the supernode r has been explored.
NOTE: There are W of them, each used for one column of a panel.</pre><p>
<pre> panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
the panel diagonal. These are filled in during <a class="el" href="dpanel__dfs_8c.html#2a809488b87d2c1a9b2a574b726e8517">dpanel_dfs()</a>, and are
used later in the inner LU factorization within the panel.
panel_lsub[]/dense[] pair forms the SPA data structure.
NOTE: There are W of them.</pre><p>
<pre> dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
NOTE: there are W of them.</pre><p>
<pre> tempv[0:*]: real temporary used for dense numeric kernels;
The size of this array is defined by <a class="el" href="slu__util_8h.html#06193b28f40a4779ae7737711642eb45">NUM_TEMPV()</a> in <a class="el" href="slu__util_8h.html" title="Utility header file.">slu_util.h</a>.
It is also used by the dropping routine <a class="el" href="ilu__ddrop__row_8c.html#380317801e05b11930fd1e094db34179">ilu_ddrop_row()</a>.
</pre>
</div>
</div><p>
<a class="anchor" name="e824bcb507f76ad3053d845352fb6b3d"></a><!-- doxytag: member="slu_sdefs.h::sgsrfs" ref="e824bcb507f76ad3053d845352fb6b3d" args="(trans_t, SuperMatrix *, SuperMatrix *, SuperMatrix *, int *, int *, char *, float *, float *, SuperMatrix *, SuperMatrix *, float *, float *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgsrfs </td>
<td>(</td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#0c4e17b2d5cea33f9991ccc6a6678d62">trans_t</a> </td>
<td class="paramname"> <em>trans</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>equed</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>R</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>C</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>B</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>X</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>ferr</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>berr</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSRFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.</pre><p>
<pre> If equilibration was performed, the system becomes:
(diag(R)*A_original*diag(C)) * X = diag(R)*B_original.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> trans (input) trans_t
Specifies the form of the system of equations:
= NOTRANS: A * X = B (No transpose)
= TRANS: A'* X = B (Transpose)
= CONJ: A**H * X = B (Conjugate transpose)</pre><p>
<pre> A (input) SuperMatrix*
The original matrix A in the system, or the scaled A if
equilibration was done. The type of A can be:
Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_GE.</pre><p>
<pre> L (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U. Use
compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U as computed by
<a class="el" href="sgstrf_8c.html#2428d5d7ef46cf9a08069d9f55901284">sgstrf()</a>. Use column-wise storage scheme,
i.e., U has types: Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> perm_c (input) int*, dimension (A->ncol)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.</pre><p>
<pre> perm_r (input) int*, dimension (A->nrow)
Row permutation vector, which defines the permutation matrix Pr;
perm_r[i] = j means row i of A is in position j in Pr*A.</pre><p>
<pre> equed (input) Specifies the form of equilibration that was done.
= 'N': No equilibration.
= 'R': Row equilibration, i.e., A was premultiplied by diag(R).
= 'C': Column equilibration, i.e., A was postmultiplied by
diag(C).
= 'B': Both row and column equilibration, i.e., A was replaced
by diag(R)*A*diag(C).</pre><p>
<pre> R (input) float*, dimension (A->nrow)
The row scale factors for A.
If equed = 'R' or 'B', A is premultiplied by diag(R).
If equed = 'N' or 'C', R is not accessed.</pre><p>
<pre> C (input) float*, dimension (A->ncol)
The column scale factors for A.
If equed = 'C' or 'B', A is postmultiplied by diag(C).
If equed = 'N' or 'R', C is not accessed.</pre><p>
<pre> B (input) SuperMatrix*
B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
The right hand side matrix B.
if equed = 'R' or 'B', B is premultiplied by diag(R).</pre><p>
<pre> X (input/output) SuperMatrix*
X has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
On entry, the solution matrix X, as computed by <a class="el" href="sgstrs_8c.html#9b6e1e555af9cf109ef3a584054a91e2">sgstrs()</a>.
On exit, the improved solution matrix X.
if *equed = 'C' or 'B', X should be premultiplied by diag(C)
in order to obtain the solution to the original system.</pre><p>
<pre> FERR (output) float*, dimension (B->ncol)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.</pre><p>
<pre> BERR (output) float*, dimension (B->ncol)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See util.h for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value</pre><p>
<pre> Internal Parameters
===================</pre><p>
<pre> ITMAX is the maximum number of steps of iterative refinement.</pre><p>
<pre> </pre>
</div>
</div><p>
<a class="anchor" name="44bbae3b1218d951ed229c461a5f14b6"></a><!-- doxytag: member="slu_sdefs.h::sgssv" ref="44bbae3b1218d951ed229c461a5f14b6" args="(superlu_options_t *, SuperMatrix *, int *, int *, SuperMatrix *, SuperMatrix *, SuperMatrix *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgssv </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname"> <em>options</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>B</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSSV solves the system of linear equations A*X=B, using the
LU factorization from SGSTRF. It performs the following steps:</pre><p>
<pre> 1. If A is stored column-wise (A->Stype = SLU_NC):</pre><p>
<pre> 1.1. Permute the columns of A, forming A*Pc, where Pc
is a permutation matrix. For more details of this step,
see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre> 1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
by Gaussian elimination with partial pivoting.
L is unit lower triangular with offdiagonal entries
bounded by 1 in magnitude, and U is upper triangular.</pre><p>
<pre> 1.3. Solve the system of equations A*X=B using the factored
form of A.</pre><p>
<pre> 2. If A is stored row-wise (A->Stype = SLU_NR), apply the
above algorithm to the transpose of A:</pre><p>
<pre> 2.1. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc, where Pc is a permutation matrix.
For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre> 2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
determined by Gaussian elimination with partial pivoting.
L is unit lower triangular with offdiagonal entries
bounded by 1 in magnitude, and U is upper triangular.</pre><p>
<pre> 2.3. Solve the system of equations A*X=B using the factored
form of A.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> options (input) superlu_options_t*
The structure defines the input parameters to control
how the LU decomposition will be performed and how the
system will be solved.</pre><p>
<pre> A (input) SuperMatrix*
Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
of linear equations is A->nrow. Currently, the type of A can be:
Stype = SLU_NC or SLU_NR; Dtype = SLU_S; Mtype = SLU_GE.
In the future, more general A may be handled.</pre><p>
<pre> perm_c (input/output) int*
If A->Stype = SLU_NC, column permutation vector of size A->ncol
which defines the permutation matrix Pc; perm_c[i] = j means
column i of A is in position j in A*Pc.
If A->Stype = SLU_NR, column permutation vector of size A->nrow
which describes permutation of columns of transpose(A)
(rows of A) as described above.</pre><p>
<pre> If options->ColPerm = MY_PERMC or options->Fact = SamePattern or
options->Fact = SamePattern_SameRowPerm, it is an input argument.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.
Otherwise, it is an output argument.</pre><p>
<pre> perm_r (input/output) int*
If A->Stype = SLU_NC, row permutation vector of size A->nrow,
which defines the permutation matrix Pr, and is determined
by partial pivoting. perm_r[i] = j means row i of A is in
position j in Pr*A.
If A->Stype = SLU_NR, permutation vector of size A->ncol, which
determines permutation of rows of transpose(A)
(columns of A) as described above.</pre><p>
<pre> If options->RowPerm = MY_PERMR or
options->Fact = SamePattern_SameRowPerm, perm_r is an
input argument.
otherwise it is an output argument.</pre><p>
<pre> L (output) SuperMatrix*
The factor L from the factorization
Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (output) SuperMatrix*
The factor U from the factorization
Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
Uses column-wise storage scheme, i.e., U has types:
Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> B (input/output) SuperMatrix*
B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
On entry, the right hand side matrix.
On exit, the solution matrix if info = 0;</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See util.h for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
> 0: if info = i, and i is
<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular,
so the solution could not be computed.
> A->ncol: number of bytes allocated when memory allocation
failure occurred, plus A->ncol.
</pre>
</div>
</div><p>
<a class="anchor" name="4d6a37b565522c7c77a173826588deee"></a><!-- doxytag: member="slu_sdefs.h::sgssvx" ref="4d6a37b565522c7c77a173826588deee" args="(superlu_options_t *, SuperMatrix *, int *, int *, int *, char *, float *, float *, SuperMatrix *, SuperMatrix *, void *, int, SuperMatrix *, SuperMatrix *, float *, float *, float *, float *, mem_usage_t *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgssvx </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname"> <em>options</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>etree</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>equed</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>R</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>C</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">void * </td>
<td class="paramname"> <em>work</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>lwork</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>B</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>X</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>recip_pivot_growth</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>rcond</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>ferr</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>berr</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structmem__usage__t.html">mem_usage_t</a> * </td>
<td class="paramname"> <em>mem_usage</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSSVX solves the system of linear equations A*X=B or A'*X=B, using
the LU factorization from <a class="el" href="sgstrf_8c.html#2428d5d7ef46cf9a08069d9f55901284">sgstrf()</a>. Error bounds on the solution and
a condition estimate are also provided. It performs the following steps:</pre><p>
<pre> 1. If A is stored column-wise (A->Stype = SLU_NC):</pre><p>
<pre> 1.1. If options->Equil = YES, scaling factors are computed to
equilibrate the system:
options->Trans = NOTRANS:
diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
options->Trans = TRANS:
(diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
options->Trans = CONJ:
(diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B
(if options->Trans=NOTRANS) or diag(C)*B (if options->Trans
= TRANS or CONJ).</pre><p>
<pre> 1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
matrix that usually preserves sparsity.
For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre> 1.3. If options->Fact != FACTORED, the LU decomposition is used to
factor the matrix A (after equilibration if options->Equil = YES)
as Pr*A*Pc = L*U, with Pr determined by partial pivoting.</pre><p>
<pre> 1.4. Compute the reciprocal pivot growth factor.</pre><p>
<pre> 1.5. If some U(i,i) = 0, so that U is exactly singular, then the
routine returns with info = i. Otherwise, the factored form of
A is used to estimate the condition number of the matrix A. If
the reciprocal of the condition number is less than machine
precision, info = A->ncol+1 is returned as a warning, but the
routine still goes on to solve for X and computes error bounds
as described below.</pre><p>
<pre> 1.6. The system of equations is solved for X using the factored form
of A.</pre><p>
<pre> 1.7. If options->IterRefine != NOREFINE, iterative refinement is
applied to improve the computed solution matrix and calculate
error bounds and backward error estimates for it.</pre><p>
<pre> 1.8. If equilibration was used, the matrix X is premultiplied by
diag(C) (if options->Trans = NOTRANS) or diag(R)
(if options->Trans = TRANS or CONJ) so that it solves the
original system before equilibration.</pre><p>
<pre> 2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm
to the transpose of A:</pre><p>
<pre> 2.1. If options->Equil = YES, scaling factors are computed to
equilibrate the system:
options->Trans = NOTRANS:
diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
options->Trans = TRANS:
(diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
options->Trans = CONJ:
(diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A' is
overwritten by diag(R)*A'*diag(C) and B by diag(R)*B
(if trans='N') or diag(C)*B (if trans = 'T' or 'C').</pre><p>
<pre> 2.2. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc, where Pc is a permutation matrix that
usually preserves sparsity.
For more details of this step, see <a class="el" href="sp__preorder_8c.html" title="Permute and performs functions on columns of orginal matrix.">sp_preorder.c</a>.</pre><p>
<pre> 2.3. If options->Fact != FACTORED, the LU decomposition is used to
factor the transpose(A) (after equilibration if
options->Fact = YES) as Pr*transpose(A)*Pc = L*U with the
permutation Pr determined by partial pivoting.</pre><p>
<pre> 2.4. Compute the reciprocal pivot growth factor.</pre><p>
<pre> 2.5. If some U(i,i) = 0, so that U is exactly singular, then the
routine returns with info = i. Otherwise, the factored form
of transpose(A) is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number
is less than machine precision, info = A->nrow+1 is returned as
a warning, but the routine still goes on to solve for X and
computes error bounds as described below.</pre><p>
<pre> 2.6. The system of equations is solved for X using the factored form
of transpose(A).</pre><p>
<pre> 2.7. If options->IterRefine != NOREFINE, iterative refinement is
applied to improve the computed solution matrix and calculate
error bounds and backward error estimates for it.</pre><p>
<pre> 2.8. If equilibration was used, the matrix X is premultiplied by
diag(C) (if options->Trans = NOTRANS) or diag(R)
(if options->Trans = TRANS or CONJ) so that it solves the
original system before equilibration.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> options (input) superlu_options_t*
The structure defines the input parameters to control
how the LU decomposition will be performed and how the
system will be solved.</pre><p>
<pre> A (input/output) SuperMatrix*
Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
of the linear equations is A->nrow. Currently, the type of A can be:
Stype = SLU_NC or SLU_NR, Dtype = SLU_D, Mtype = SLU_GE.
In the future, more general A may be handled.</pre><p>
<pre> On entry, If options->Fact = FACTORED and equed is not 'N',
then A must have been equilibrated by the scaling factors in
R and/or C.
On exit, A is not modified if options->Equil = NO, or if
options->Equil = YES but equed = 'N' on exit.
Otherwise, if options->Equil = YES and equed is not 'N',
A is scaled as follows:
If A->Stype = SLU_NC:
equed = 'R': A := diag(R) * A
equed = 'C': A := A * diag(C)
equed = 'B': A := diag(R) * A * diag(C).
If A->Stype = SLU_NR:
equed = 'R': transpose(A) := diag(R) * transpose(A)
equed = 'C': transpose(A) := transpose(A) * diag(C)
equed = 'B': transpose(A) := diag(R) * transpose(A) * diag(C).</pre><p>
<pre> perm_c (input/output) int*
If A->Stype = SLU_NC, Column permutation vector of size A->ncol,
which defines the permutation matrix Pc; perm_c[i] = j means
column i of A is in position j in A*Pc.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.</pre><p>
<pre> If A->Stype = SLU_NR, column permutation vector of size A->nrow,
which describes permutation of columns of transpose(A)
(rows of A) as described above.</pre><p>
<pre> perm_r (input/output) int*
If A->Stype = SLU_NC, row permutation vector of size A->nrow,
which defines the permutation matrix Pr, and is determined
by partial pivoting. perm_r[i] = j means row i of A is in
position j in Pr*A.</pre><p>
<pre> If A->Stype = SLU_NR, permutation vector of size A->ncol, which
determines permutation of rows of transpose(A)
(columns of A) as described above.</pre><p>
<pre> If options->Fact = SamePattern_SameRowPerm, the pivoting routine
will try to use the input perm_r, unless a certain threshold
criterion is violated. In that case, perm_r is overwritten by a
new permutation determined by partial pivoting or diagonal
threshold pivoting.
Otherwise, perm_r is output argument.</pre><p>
<pre> etree (input/output) int*, dimension (A->ncol)
Elimination tree of Pc'*A'*A*Pc.
If options->Fact != FACTORED and options->Fact != DOFACT,
etree is an input argument, otherwise it is an output argument.
Note: etree is a vector of parent pointers for a forest whose
vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.</pre><p>
<pre> equed (input/output) char*
Specifies the form of equilibration that was done.
= 'N': No equilibration.
= 'R': Row equilibration, i.e., A was premultiplied by diag(R).
= 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
= 'B': Both row and column equilibration, i.e., A was replaced
by diag(R)*A*diag(C).
If options->Fact = FACTORED, equed is an input argument,
otherwise it is an output argument.</pre><p>
<pre> R (input/output) float*, dimension (A->nrow)
The row scale factors for A or transpose(A).
If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
(if A->Stype = SLU_NR) is multiplied on the left by diag(R).
If equed = 'N' or 'C', R is not accessed.
If options->Fact = FACTORED, R is an input argument,
otherwise, R is output.
If options->zFact = FACTORED and equed = 'R' or 'B', each element
of R must be positive.</pre><p>
<pre> C (input/output) float*, dimension (A->ncol)
The column scale factors for A or transpose(A).
If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
(if A->Stype = SLU_NR) is multiplied on the right by diag(C).
If equed = 'N' or 'R', C is not accessed.
If options->Fact = FACTORED, C is an input argument,
otherwise, C is output.
If options->Fact = FACTORED and equed = 'C' or 'B', each element
of C must be positive.</pre><p>
<pre> L (output) SuperMatrix*
The factor L from the factorization
Pr*A*Pc=L*U (if A->Stype SLU_= NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (output) SuperMatrix*
The factor U from the factorization
Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
Uses column-wise storage scheme, i.e., U has types:
Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> work (workspace/output) void*, size (lwork) (in bytes)
User supplied workspace, should be large enough
to hold data structures for factors L and U.
On exit, if fact is not 'F', L and U point to this array.</pre><p>
<pre> lwork (input) int
Specifies the size of work array in bytes.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,
returns error if space runs out.
= -1: the routine guesses the amount of space needed without
performing the factorization, and returns it in
mem_usage->total_needed; no other side effects.</pre><p>
<pre> See argument 'mem_usage' for memory usage statistics.</pre><p>
<pre> B (input/output) SuperMatrix*
B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
On entry, the right hand side matrix.
If B->ncol = 0, only LU decomposition is performed, the triangular
solve is skipped.
On exit,
if equed = 'N', B is not modified; otherwise
if A->Stype = SLU_NC:
if options->Trans = NOTRANS and equed = 'R' or 'B',
B is overwritten by diag(R)*B;
if options->Trans = TRANS or CONJ and equed = 'C' of 'B',
B is overwritten by diag(C)*B;
if A->Stype = SLU_NR:
if options->Trans = NOTRANS and equed = 'C' or 'B',
B is overwritten by diag(C)*B;
if options->Trans = TRANS or CONJ and equed = 'R' of 'B',
B is overwritten by diag(R)*B.</pre><p>
<pre> X (output) SuperMatrix*
X has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
If info = 0 or info = A->ncol+1, X contains the solution matrix
to the original system of equations. Note that A and B are modified
on exit if equed is not 'N', and the solution to the equilibrated
system is inv(diag(C))*X if options->Trans = NOTRANS and
equed = 'C' or 'B', or inv(diag(R))*X if options->Trans = 'T' or 'C'
and equed = 'R' or 'B'.</pre><p>
<pre> recip_pivot_growth (output) float*
The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
The infinity norm is used. If recip_pivot_growth is much less
than 1, the stability of the LU factorization could be poor.</pre><p>
<pre> rcond (output) float*
The estimate of the reciprocal condition number of the matrix A
after equilibration (if done). If rcond is less than the machine
precision (in particular, if rcond = 0), the matrix is singular
to working precision. This condition is indicated by a return
code of info > 0.</pre><p>
<pre> FERR (output) float*, dimension (B->ncol)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
If options->IterRefine = NOREFINE, ferr = 1.0.</pre><p>
<pre> BERR (output) float*, dimension (B->ncol)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
If options->IterRefine = NOREFINE, berr = 1.0.</pre><p>
<pre> mem_usage (output) mem_usage_t*
Record the memory usage statistics, consisting of following fields:<ul>
<li>for_lu (float)
The amount of space used in bytes for L data structures.</li><li>total_needed (float)
The amount of space needed in bytes to perform factorization.</li><li>expansions (int)
The number of memory expansions during the LU factorization.</li></ul>
</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See <a class="el" href="slu__util_8h.html" title="Utility header file.">slu_util.h</a> for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is
<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed.
= A->ncol+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular to
working precision. Nevertheless, the solution and
error bounds are computed because there are a number
of situations where the computed solution can be more
accurate than the value of RCOND would suggest.
> A->ncol+1: number of bytes allocated when memory allocation
failure occurred, plus A->ncol.
</pre>
</div>
</div><p>
<a class="anchor" name="f006a81b576fffa92a1c848ac3191c70"></a><!-- doxytag: member="slu_sdefs.h::sgstrf" ref="f006a81b576fffa92a1c848ac3191c70" args="(superlu_options_t *, SuperMatrix *, int, int, int *, void *, int, int *, int *, SuperMatrix *, SuperMatrix *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgstrf </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structsuperlu__options__t.html">superlu_options_t</a> * </td>
<td class="paramname"> <em>options</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>relax</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>panel_size</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>etree</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">void * </td>
<td class="paramname"> <em>work</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>lwork</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSTRF computes an LU factorization of a general sparse m-by-n
matrix A using partial pivoting with row interchanges.
The factorization has the form
Pr * A = L * U
where Pr is a row permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
triangular (upper trapezoidal if A->nrow < A->ncol).</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> options (input) superlu_options_t*
The structure defines the input parameters to control
how the LU decomposition will be performed.</pre><p>
<pre> A (input) SuperMatrix*
Original matrix A, permuted by columns, of dimension
(A->nrow, A->ncol). The type of A can be:
Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.</pre><p>
<pre> relax (input) int
To control degree of relaxing supernodes. If the number
of nodes (columns) in a subtree of the elimination tree is less
than relax, this subtree is considered as one supernode,
regardless of the row structures of those columns.</pre><p>
<pre> panel_size (input) int
A panel consists of at most panel_size consecutive columns.</pre><p>
<pre> etree (input) int*, dimension (A->ncol)
Elimination tree of A'*A.
Note: etree is a vector of parent pointers for a forest whose
vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
On input, the columns of A should be permuted so that the
etree is in a certain postorder.</pre><p>
<pre> work (input/output) void*, size (lwork) (in bytes)
User-supplied work space and space for the output data structures.
Not referenced if lwork = 0;</pre><p>
<pre> lwork (input) int
Specifies the size of work array in bytes.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,
returns error if space runs out.
= -1: the routine guesses the amount of space needed without
performing the factorization, and returns it in
*info; no other side effects.</pre><p>
<pre> perm_c (input) int*, dimension (A->ncol)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.
When searching for diagonal, perm_c[*] is applied to the
row subscripts of A, so that diagonal threshold pivoting
can find the diagonal of A, rather than that of A*Pc.</pre><p>
<pre> perm_r (input/output) int*, dimension (A->nrow)
Row permutation vector which defines the permutation matrix Pr,
perm_r[i] = j means row i of A is in position j in Pr*A.
If options->Fact = SamePattern_SameRowPerm, the pivoting routine
will try to use the input perm_r, unless a certain threshold
criterion is violated. In that case, perm_r is overwritten by
a new permutation determined by partial pivoting or diagonal
threshold pivoting.
Otherwise, perm_r is output argument;</pre><p>
<pre> L (output) SuperMatrix*
The factor L from the factorization Pr*A=L*U; use compressed row
subscripts storage for supernodes, i.e., L has type:
Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (output) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
storage scheme, i.e., U has types: Stype = SLU_NC,
Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See <a class="el" href="slu__util_8h.html" title="Utility header file.">slu_util.h</a> for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is
<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular,
and division by zero will occur if it is used to solve a
system of equations.
> A->ncol: number of bytes allocated when memory allocation
failure occurred, plus A->ncol. If lwork = -1, it is
the estimated amount of space needed, plus A->ncol.</pre><p>
<pre> ======================================================================</pre><p>
<pre> Local Working Arrays:
======================
m = number of rows in the matrix
n = number of columns in the matrix</pre><p>
<pre> xprune[0:n-1]: xprune[*] points to locations in subscript
vector lsub[*]. For column i, xprune[i] denotes the point where
structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need
to be traversed for symbolic factorization.</pre><p>
<pre> marker[0:3*m-1]: marker[i] = j means that node i has been
reached when working on column j.
Storage: relative to original row subscripts
NOTE: There are 3 of them: marker/marker1 are used for panel dfs,
see <a class="el" href="spanel__dfs_8c.html" title="Peforms a symbolic factorization on a panel of symbols.">spanel_dfs.c</a>; marker2 is used for inner-factorization,
see <a class="el" href="scolumn__dfs_8c.html" title="Performs a symbolic factorization.">scolumn_dfs.c</a>.</pre><p>
<pre> parent[0:m-1]: parent vector used during dfs
Storage: relative to new row subscripts</pre><p>
<pre> xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
unexplored neighbor of i in lsub[*]</pre><p>
<pre> segrep[0:nseg-1]: contains the list of supernodal representatives
in topological order of the dfs. A supernode representative is the
last column of a supernode.
The maximum size of segrep[] is n.</pre><p>
<pre> repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
supernodal representative r, repfnz[r] is the location of the first
nonzero in this segment. It is also used during the dfs: repfnz[r]>0
indicates the supernode r has been explored.
NOTE: There are W of them, each used for one column of a panel.</pre><p>
<pre> panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
the panel diagonal. These are filled in during <a class="el" href="slu__sdefs_8h.html#77baf210393e04fa71d4e73b5e60e556">spanel_dfs()</a>, and are
used later in the inner LU factorization within the panel.
panel_lsub[]/dense[] pair forms the SPA data structure.
NOTE: There are W of them.</pre><p>
<pre> dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
NOTE: there are W of them.</pre><p>
<pre> tempv[0:*]: real temporary used for dense numeric kernels;
The size of this array is defined by <a class="el" href="slu__util_8h.html#06193b28f40a4779ae7737711642eb45">NUM_TEMPV()</a> in <a class="el" href="slu__sdefs_8h.html" title="Header file for real operations.">slu_sdefs.h</a>.
</pre>
</div>
</div><p>
<a class="anchor" name="ea450a9c52512127d6eaaebf0a65f9ce"></a><!-- doxytag: member="slu_sdefs.h::sgstrs" ref="ea450a9c52512127d6eaaebf0a65f9ce" args="(trans_t, SuperMatrix *, SuperMatrix *, int *, int *, SuperMatrix *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sgstrs </td>
<td>(</td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#0c4e17b2d5cea33f9991ccc6a6678d62">trans_t</a> </td>
<td class="paramname"> <em>trans</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>B</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SGSTRS solves a system of linear equations A*X=B or A'*X=B
with A sparse and B dense, using the LU factorization computed by
SGSTRF.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> trans (input) trans_t
Specifies the form of the system of equations:
= NOTRANS: A * X = B (No transpose)
= TRANS: A'* X = B (Transpose)
= CONJ: A**H * X = B (Conjugate transpose)</pre><p>
<pre> L (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U as computed by
<a class="el" href="sgstrf_8c.html#2428d5d7ef46cf9a08069d9f55901284">sgstrf()</a>. Use compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.</pre><p>
<pre> U (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U as computed by
<a class="el" href="sgstrf_8c.html#2428d5d7ef46cf9a08069d9f55901284">sgstrf()</a>. Use column-wise storage scheme, i.e., U has types:
Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.</pre><p>
<pre> perm_c (input) int*, dimension (L->ncol)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.</pre><p>
<pre> perm_r (input) int*, dimension (L->nrow)
Row permutation vector, which defines the permutation matrix Pr;
perm_r[i] = j means row i of A is in position j in Pr*A.</pre><p>
<pre> B (input/output) SuperMatrix*
B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
On entry, the right hand side matrix.
On exit, the solution matrix if info = 0;</pre><p>
<pre> stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See util.h for the definition of 'SuperLUStat_t'.</pre><p>
<pre> info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
</pre>
</div>
</div><p>
<a class="anchor" name="ba0eeda28d139bf88878880edd3cca5a"></a><!-- doxytag: member="slu_sdefs.h::sinf_norm_error" ref="ba0eeda28d139bf88878880edd3cca5a" args="(int, SuperMatrix *, float *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sinf_norm_error </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="47c1dd1b8332f4366d5c5112219fdb3a"></a><!-- doxytag: member="slu_sdefs.h::slamch_" ref="47c1dd1b8332f4366d5c5112219fdb3a" args="(char *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float slamch_ </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>cmach</em> </td>
<td> ) </td>
<td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SLAMCH determines single precision machine parameters.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> CMACH (input) CHARACTER*1
Specifies the value to be returned by SLAMCH:
= 'E' or 'e', SLAMCH := eps
= 'S' or 's , SLAMCH := sfmin
= 'B' or 'b', SLAMCH := base
= 'P' or 'p', SLAMCH := eps*base
= 'N' or 'n', SLAMCH := t
= 'R' or 'r', SLAMCH := rnd
= 'M' or 'm', SLAMCH := emin
= 'U' or 'u', SLAMCH := rmin
= 'L' or 'l', SLAMCH := emax
= 'O' or 'o', SLAMCH := rmax</pre><p>
<pre> where</pre><p>
<pre> eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base**(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base**emax)*(1-eps)</pre><p>
<pre> =====================================================================
</pre>
</div>
</div><p>
<a class="anchor" name="fe4b556cd9d484f53606d114f83649d4"></a><!-- doxytag: member="slu_sdefs.h::slaqgs" ref="fe4b556cd9d484f53606d114f83649d4" args="(SuperMatrix *, float *, float *, float, float, float, char *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void slaqgs </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>rowcnd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>colcnd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>amax</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>equed</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> SLAQGS equilibrates a general sparse M by N matrix A using the row and
scaling factors in the vectors R and C.</pre><p>
<pre> See <a class="el" href="supermatrix_8h.html" title="Defines matrix types.">supermatrix.h</a> for the definition of 'SuperMatrix' structure.</pre><p>
<pre> Arguments
=========</pre><p>
<pre> A (input/output) SuperMatrix*
On exit, the equilibrated matrix. See EQUED for the form of
the equilibrated matrix. The type of A can be:
Stype = NC; Dtype = SLU_S; Mtype = GE.</pre><p>
<pre> R (input) float*, dimension (A->nrow)
The row scale factors for A.</pre><p>
<pre> C (input) float*, dimension (A->ncol)
The column scale factors for A.</pre><p>
<pre> ROWCND (input) float
Ratio of the smallest R(i) to the largest R(i).</pre><p>
<pre> COLCND (input) float
Ratio of the smallest C(i) to the largest C(i).</pre><p>
<pre> AMAX (input) float
Absolute value of largest matrix entry.</pre><p>
<pre> EQUED (output) char*
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).</pre><p>
<pre> Internal Parameters
===================</pre><p>
<pre> THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.</pre><p>
<pre> LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.</pre><p>
<pre> =====================================================================
</pre>
</div>
</div><p>
<a class="anchor" name="69557d06b4e300aa6aca944561f3bb32"></a><!-- doxytag: member="slu_sdefs.h::sldperm" ref="69557d06b4e300aa6aca944561f3bb32" args="(int, int, int, int[], int[], float[], int[], float[], float[])" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sldperm </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname">[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname">[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname">[]</td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="f68715ec86cde90aa31fec07164d6ea6"></a><!-- doxytag: member="slu_sdefs.h::sLUMemInit" ref="f68715ec86cde90aa31fec07164d6ea6" args="(fact_t, void *, int, int, int, int, int, float, SuperMatrix *, SuperMatrix *, GlobalLU_t *, int **, float **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sLUMemInit </td>
<td>(</td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#c785c8235480e5cfef9848d89c047c0a">fact_t</a> </td>
<td class="paramname"> <em>fact</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">void * </td>
<td class="paramname"> <em>work</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>lwork</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>n</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>annz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>panel_size</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>fill_ratio</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"> <em>iwork</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname"> <em>dwork</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
Memory-related.<p>
<pre>
For those unpredictable size, estimate as fill_ratio * nnz(A).
Return value:
If lwork = -1, return the estimated amount of space required, plus n;
otherwise, return the amount of space actually allocated when
memory allocation failure occurred.
</pre>
</div>
</div><p>
<a class="anchor" name="9af26d0426eb0bb63755880f2e67e7b7"></a><!-- doxytag: member="slu_sdefs.h::sLUMemXpand" ref="9af26d0426eb0bb63755880f2e67e7b7" args="(int, int, MemType, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sLUMemXpand </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>next</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="superlu__enum__consts_8h.html#bd31f838aefffa46191d0d7dc36a96b2">MemType</a> </td>
<td class="paramname"> <em>mem_type</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>maxlen</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Return value: 0 - successful return
> 0 - number of bytes allocated when run out of space
</pre>
</div>
</div><p>
<a class="anchor" name="9035f0d2a50cf5d8e29287572bd1be83"></a><!-- doxytag: member="slu_sdefs.h::sLUWorkFree" ref="9035f0d2a50cf5d8e29287572bd1be83" args="(int *, float *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sLUWorkFree </td>
<td>(</td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="b50ebebf3a620086366b6c310d52d681"></a><!-- doxytag: member="slu_sdefs.h::smemory_usage" ref="b50ebebf3a620086366b6c310d52d681" args="(const int, const int, const int, const int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int smemory_usage </td>
<td>(</td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="35b4a0e44c32443df609069021d27812"></a><!-- doxytag: member="slu_sdefs.h::sp_sgemm" ref="35b4a0e44c32443df609069021d27812" args="(char *, char *, int, int, int, float, SuperMatrix *, float *, int, float, float *, int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sp_sgemm </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>transa</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>transb</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>n</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>k</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>alpha</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>b</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>ldb</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>beta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>ldc</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> sp_s performs one of the matrix-matrix operations</pre><p>
<pre> C := alpha*op( A )*op( B ) + beta*C,</pre><p>
<pre> where op( X ) is one of</pre><p>
<pre> op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),</pre><p>
<pre> alpha and beta are scalars, and A, B and C are matrices, with op( A )
an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.</pre><p>
<pre> Parameters
==========</pre><p>
<pre> TRANSA - (input) char*
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = 'N' or 'n', op( A ) = A.
TRANSA = 'T' or 't', op( A ) = A'.
TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
Unchanged on exit.</pre><p>
<pre> TRANSB - (input) char*
On entry, TRANSB specifies the form of op( B ) to be used in
the matrix multiplication as follows:
TRANSB = 'N' or 'n', op( B ) = B.
TRANSB = 'T' or 't', op( B ) = B'.
TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
Unchanged on exit.</pre><p>
<pre> M - (input) int
On entry, M specifies the number of rows of the matrix
op( A ) and of the matrix C. M must be at least zero.
Unchanged on exit.</pre><p>
<pre> N - (input) int
On entry, N specifies the number of columns of the matrix
op( B ) and the number of columns of the matrix C. N must be
at least zero.
Unchanged on exit.</pre><p>
<pre> K - (input) int
On entry, K specifies the number of columns of the matrix
op( A ) and the number of rows of the matrix op( B ). K must
be at least zero.
Unchanged on exit.</pre><p>
<pre> ALPHA - (input) float
On entry, ALPHA specifies the scalar alpha.</pre><p>
<pre> A - (input) SuperMatrix*
Matrix A with a sparse format, of dimension (A->nrow, A->ncol).
Currently, the type of A can be:
Stype = NC or NCP; Dtype = SLU_S; Mtype = GE.
In the future, more general A can be handled.</pre><p>
<pre> B - FLOAT PRECISION array of DIMENSION ( LDB, kb ), where kb is
n when TRANSB = 'N' or 'n', and is k otherwise.
Before entry with TRANSB = 'N' or 'n', the leading k by n
part of the array B must contain the matrix B, otherwise
the leading n by k part of the array B must contain the
matrix B.
Unchanged on exit.</pre><p>
<pre> LDB - (input) int
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least <a class="el" href="slamch_8c.html#ffe776513b24d84b39af8ab0930fef7f">max( 1, n )</a>.
Unchanged on exit.</pre><p>
<pre> BETA - (input) float
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.</pre><p>
<pre> C - FLOAT PRECISION array of DIMENSION ( LDC, n ).
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n matrix
( alpha*op( A )*B + beta*C ).</pre><p>
<pre> LDC - (input) int
On entry, LDC specifies the first dimension of C as declared
in the calling (sub)program. LDC must be at least <a class="el" href="slamch_8c.html#ffe776513b24d84b39af8ab0930fef7f">max(1,m)</a>.
Unchanged on exit.</pre><p>
<pre> ==== Sparse Level 3 Blas routine.
</pre>
</div>
</div><p>
<a class="anchor" name="9e543b2d14781b56ef349114012b4fc9"></a><!-- doxytag: member="slu_sdefs.h::sp_sgemv" ref="9e543b2d14781b56ef349114012b4fc9" args="(char *, float, SuperMatrix *, float *, int, float, float *, int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sp_sgemv </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>trans</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>alpha</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>x</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>incx</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float </td>
<td class="paramname"> <em>beta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>y</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>incy</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> <a class="el" href="slu__sdefs_8h.html#9e543b2d14781b56ef349114012b4fc9" title="Performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x...">sp_sgemv()</a> performs one of the matrix-vector operations
y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is a
sparse A->nrow by A->ncol matrix.</pre><p>
<pre> Parameters
==========</pre><p>
<pre> TRANS - (input) char*
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.</pre><p>
<pre> ALPHA - (input) float
On entry, ALPHA specifies the scalar alpha.</pre><p>
<pre> A - (input) SuperMatrix*
Matrix A with a sparse format, of dimension (A->nrow, A->ncol).
Currently, the type of A can be:
Stype = NC or NCP; Dtype = SLU_S; Mtype = GE.
In the future, more general A can be handled.</pre><p>
<pre> X - (input) float*, array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.</pre><p>
<pre> INCX - (input) int
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.</pre><p>
<pre> BETA - (input) float
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.</pre><p>
<pre> Y - (output) float*, array of DIMENSION at least
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.</pre><p>
<pre> INCY - (input) int
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.</pre><p>
<pre> ==== Sparse Level 2 Blas routine.
</pre>
</div>
</div><p>
<a class="anchor" name="a6d287b6b9bcaf72a692343e614c429c"></a><!-- doxytag: member="slu_sdefs.h::sp_strsv" ref="a6d287b6b9bcaf72a692343e614c429c" args="(char *, char *, char *, SuperMatrix *, SuperMatrix *, float *, SuperLUStat_t *, int *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sp_strsv </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>uplo</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>trans</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">char * </td>
<td class="paramname"> <em>diag</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>x</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>info</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> <a class="el" href="slu__sdefs_8h.html#a6d287b6b9bcaf72a692343e614c429c" title="Solves one of the systems of equations A*x = b, or A'*x = b.">sp_strsv()</a> solves one of the systems of equations
A*x = b, or A'*x = b,
where b and x are n element vectors and A is a sparse unit , or
non-unit, upper or lower triangular matrix.
No test for singularity or near-singularity is included in this
routine. Such tests must be performed before calling this routine.</pre><p>
<pre> Parameters
==========</pre><p>
<pre> uplo - (input) char*
On entry, uplo specifies whether the matrix is an upper or
lower triangular matrix as follows:
uplo = 'U' or 'u' A is an upper triangular matrix.
uplo = 'L' or 'l' A is a lower triangular matrix.</pre><p>
<pre> trans - (input) char*
On entry, trans specifies the equations to be solved as
follows:
trans = 'N' or 'n' A*x = b.
trans = 'T' or 't' A'*x = b.
trans = 'C' or 'c' A'*x = b.</pre><p>
<pre> diag - (input) char*
On entry, diag specifies whether or not A is unit
triangular as follows:
diag = 'U' or 'u' A is assumed to be unit triangular.
diag = 'N' or 'n' A is not assumed to be unit
triangular.</pre><p>
<pre> L - (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U. Use
compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SC, Dtype = SLU_S, Mtype = TRLU.</pre><p>
<pre> U - (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U.
U has types: Stype = NC, Dtype = SLU_S, Mtype = TRU.</pre><p>
<pre> x - (input/output) float*
Before entry, the incremented array X must contain the n
element right-hand side vector b. On exit, X is overwritten
with the solution vector x.</pre><p>
<pre> info - (output) int*
If *info = -i, the i-th argument had an illegal value.
</pre>
</div>
</div><p>
<a class="anchor" name="51486936a9ff5079afed80eb5bf8a3e0"></a><!-- doxytag: member="slu_sdefs.h::spanel_bmod" ref="51486936a9ff5079afed80eb5bf8a3e0" args="(const int, const int, const int, const int, float *, float *, int *, int *, GlobalLU_t *, SuperLUStat_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void spanel_bmod </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>w</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>dense</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>tempv</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> Performs numeric block updates (sup-panel) in topological order.
It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
Special processing on the supernodal portion of L[*,j]</pre><p>
<pre> Before entering this routine, the original nonzeros in the panel
were already copied into the spa[m,w].</pre><p>
<pre> Updated/Output parameters-
dense[0:m-1,w]: L[*,j:j+w-1] and U[*,j:j+w-1] are returned
collectively in the m-by-w vector dense[*].
</pre>
</div>
</div><p>
<a class="anchor" name="77baf210393e04fa71d4e73b5e60e556"></a><!-- doxytag: member="slu_sdefs.h::spanel_dfs" ref="77baf210393e04fa71d4e73b5e60e556" args="(const int, const int, const int, SuperMatrix *, int *, int *, float *, int *, int *, int *, int *, int *, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void spanel_dfs </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>m</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>w</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname"> <em>dense</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>panel_lsub</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xprune</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>parent</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xplore</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> Performs a symbolic factorization on a panel of columns [jcol, jcol+w).</pre><p>
<pre> A supernode representative is the last column of a supernode.
The nonzeros in U[*,j] are segments that end at supernodal
representatives.</pre><p>
<pre> The routine returns one list of the supernodal representatives
in topological order of the dfs that generates them. This list is
a superset of the topological order of each individual column within
the panel.
The location of the first nonzero in each supernodal segment
(supernodal entry location) is also returned. Each column has a
separate list for this purpose.</pre><p>
<pre> Two marker arrays are used for dfs:
marker[i] == jj, if i was visited during dfs of current column jj;
marker1[i] >= jcol, if i was visited by earlier columns in this panel;</pre><p>
<pre> marker: A-row --> A-row/col (0/1)
repfnz: SuperA-col --> PA-row
parent: SuperA-col --> SuperA-col
xplore: SuperA-col --> index to L-structure
</pre>
</div>
</div><p>
<a class="anchor" name="cb8787465a6296109b9a306d5a315ff8"></a><!-- doxytag: member="slu_sdefs.h::sPivotGrowth" ref="cb8787465a6296109b9a306d5a315ff8" args="(int, SuperMatrix *, int *, SuperMatrix *, SuperMatrix *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float sPivotGrowth </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname"> <em>ncols</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>A</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======</pre><p>
<pre> Compute the reciprocal pivot growth factor of the leading ncols columns
of the matrix, using the formula:
min_j ( max_i(<a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_ij)</a>) / max_i(<a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(U_ij)</a>) )</pre><p>
<pre> Arguments
=========</pre><p>
<pre> ncols (input) int
The number of columns of matrices A, L and U.</pre><p>
<pre> A (input) SuperMatrix*
Original matrix A, permuted by columns, of dimension
(A->nrow, A->ncol). The type of A can be:
Stype = NC; Dtype = SLU_S; Mtype = GE.</pre><p>
<pre> L (output) SuperMatrix*
The factor L from the factorization Pr*A=L*U; use compressed row
subscripts storage for supernodes, i.e., L has type:
Stype = SC; Dtype = SLU_S; Mtype = TRLU.</pre><p>
<pre> U (output) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
storage scheme, i.e., U has types: Stype = NC;
Dtype = SLU_S; Mtype = TRU.
</pre>
</div>
</div><p>
<a class="anchor" name="d7ddf03faedae25b4d73e0b6b33bf50c"></a><!-- doxytag: member="slu_sdefs.h::spivotL" ref="d7ddf03faedae25b4d73e0b6b33bf50c" args="(const int, const double, int *, int *, int *, int *, int *, GlobalLU_t *, SuperLUStat_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int spivotL </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>u</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>usepr</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>iperm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>iperm_c</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>pivrow</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"> <em>stat</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
Performs the numerical pivoting on the current column of L,
and the CDIV operation.</pre><p>
<pre> Pivot policy:
(1) Compute thresh = u * max_(i>=j) <a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_ij)</a>;
(2) IF user specifies pivot row k and <a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_kj)</a> >= thresh THEN
pivot row = k;
ELSE IF <a class="el" href="slamch_8c.html#3aa069ac3980707dae1e0530f50d59e4">abs(A_jj)</a> >= thresh THEN
pivot row = j;
ELSE
pivot row = m;</pre><p>
<pre> Note: If you absolutely want to use a given pivot order, then set u=0.0.</pre><p>
<pre> Return value: 0 success;
i > 0 U(i,i) is exactly zero.
</pre>
</div>
</div><p>
<a class="anchor" name="5cd6efad9d9fb7aef8a984f5e3cff66b"></a><!-- doxytag: member="slu_sdefs.h::sPrint_CompCol_Matrix" ref="5cd6efad9d9fb7aef8a984f5e3cff66b" args="(char *, SuperMatrix *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sPrint_CompCol_Matrix </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="25b29c47333295f4aa744e541e277ea0"></a><!-- doxytag: member="slu_sdefs.h::sPrint_Dense_Matrix" ref="25b29c47333295f4aa744e541e277ea0" args="(char *, SuperMatrix *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sPrint_Dense_Matrix </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="297455c494a78c098b2bf418edbc6b16"></a><!-- doxytag: member="slu_sdefs.h::sprint_lu_col" ref="297455c494a78c098b2bf418edbc6b16" args="(char *, int, int, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sprint_lu_col </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="eb289a84407c9cbbb33cdf3dbb1dacbe"></a><!-- doxytag: member="slu_sdefs.h::sPrint_SuperNode_Matrix" ref="eb289a84407c9cbbb33cdf3dbb1dacbe" args="(char *, SuperMatrix *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sPrint_SuperNode_Matrix </td>
<td>(</td>
<td class="paramtype">char * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="cf9da2c45289246ef663fc4a96d1ad78"></a><!-- doxytag: member="slu_sdefs.h::spruneL" ref="cf9da2c45289246ef663fc4a96d1ad78" args="(const int, const int *, const int, const int, const int *, const int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void spruneL </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>perm_r</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>pivrow</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>nseg</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>segrep</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>repfnz</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xprune</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
Prunes the L-structure of supernodes whose L-structure
contains the current pivot row "pivrow"
</pre>
</div>
</div><p>
<a class="anchor" name="98d44fe59660f87330b0172151a76141"></a><!-- doxytag: member="slu_sdefs.h::sqselect" ref="98d44fe59660f87330b0172151a76141" args="(int, float *, int)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float sqselect </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="1357f9a3b2ffb9522883ad84affa63e3"></a><!-- doxytag: member="slu_sdefs.h::sQuerySpace" ref="1357f9a3b2ffb9522883ad84affa63e3" args="(SuperMatrix *, SuperMatrix *, mem_usage_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sQuerySpace </td>
<td>(</td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>L</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperMatrix.html">SuperMatrix</a> * </td>
<td class="paramname"> <em>U</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structmem__usage__t.html">mem_usage_t</a> * </td>
<td class="paramname"> <em>mem_usage</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
mem_usage consists of the following fields:<ul>
<li>for_lu (float)
The amount of space used in bytes for the L data structures.</li><li>total_needed (float)
The amount of space needed in bytes to perform factorization.
</li></ul>
</pre>
</div>
</div><p>
<a class="anchor" name="734dbf3f5d66b2a53d88e69daaad729e"></a><!-- doxytag: member="slu_sdefs.h::sreadhb" ref="734dbf3f5d66b2a53d88e69daaad729e" args="(int *, int *, int *, float **, int **, int **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sreadhb </td>
<td>(</td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="b345670a95db3f9c4b9c451224db8227"></a><!-- doxytag: member="slu_sdefs.h::sreadmt" ref="b345670a95db3f9c4b9c451224db8227" args="(int *, int *, int *, float **, int **, int **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sreadmt </td>
<td>(</td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="d992a573876b4abfe192ec2bc207f6b0"></a><!-- doxytag: member="slu_sdefs.h::sreadrb" ref="d992a573876b4abfe192ec2bc207f6b0" args="(int *, int *, int *, float **, int **, int **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sreadrb </td>
<td>(</td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="e99cb18465c8992235a7bc003237f692"></a><!-- doxytag: member="slu_sdefs.h::sreadtriple" ref="e99cb18465c8992235a7bc003237f692" args="(int *, int *, int *, float **, int **, int **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sreadtriple </td>
<td>(</td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="b5b2859bf1ef1900506dfa702574c6ad"></a><!-- doxytag: member="slu_sdefs.h::sSetRWork" ref="b5b2859bf1ef1900506dfa702574c6ad" args="(int, int, float *, float **, float **)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void sSetRWork </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float ** </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="60e60255360fae0b1458da070690a3a2"></a><!-- doxytag: member="slu_sdefs.h::ssnode_bmod" ref="60e60255360fae0b1458da070690a3a2" args="(const int, const int, const int, float *, float *, GlobalLU_t *, SuperLUStat_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ssnode_bmod </td>
<td>(</td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const </td>
<td class="paramname"> <em>int</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structSuperLUStat__t.html">SuperLUStat_t</a> * </td>
<td class="paramname"></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
</div>
</div><p>
<a class="anchor" name="d9d54c8dfc11f1e034b4b7175be60ffb"></a><!-- doxytag: member="slu_sdefs.h::ssnode_dfs" ref="d9d54c8dfc11f1e034b4b7175be60ffb" args="(const int, const int, const int *, const int *, const int *, int *, int *, GlobalLU_t *)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int ssnode_dfs </td>
<td>(</td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>jcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int </td>
<td class="paramname"> <em>kcol</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>asub</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>xa_begin</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const int * </td>
<td class="paramname"> <em>xa_end</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>xprune</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int * </td>
<td class="paramname"> <em>marker</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structGlobalLU__t.html">GlobalLU_t</a> * </td>
<td class="paramname"> <em>Glu</em></td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td width="100%"></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<pre>
Purpose
=======
<a class="el" href="slu__sdefs_8h.html#d9d54c8dfc11f1e034b4b7175be60ffb">ssnode_dfs()</a> - Determine the union of the row structures of those
columns within the relaxed snode.
Note: The relaxed snodes are leaves of the supernodal etree, therefore,
the portion outside the rectangular supernode must be zero.</pre><p>
<pre> Return value
============
0 success;
>0 number of bytes allocated when run out of memory.
</pre>
</div>
</div><p>
</div>
<hr size="1"><address style="text-align: right;"><small>Generated on Mon Nov 22 10:23:48 2010 for SuperLU by
<a href="http://www.doxygen.org/index.html">
<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.5 </small></address>
</body>
</html>