/*------------------------------------
Iwa_SpectrumFx
参照画像を位相差として、干渉色を出力する
------------------------------------*/
#include "iwa_spectrumfx.h"
#include "iwa_cie_d65.h"
#include "iwa_xyz.h"
namespace
{
const float PI = 3.14159265f;
}
/*------------------------------------
シャボン色マップの生成
------------------------------------*/
void Iwa_SpectrumFx::calcBubbleMap(float3 *bubbleColor, double frame)
{
int j, k; /*- bubbleColor[j][k] = [256][3] -*/
float d; /*- 膜厚(μm) -*/
int ram; /*- 波長のfor文用 -*/
float rambda; /*- 波長(μm) -*/
struct REFLECTIVITY {
float r_ab, t_ab, r_ba, t_ba; /*- 各境界での振幅反射率、振幅透過率 -*/
float r_real, r_img; /*- 薄膜の振幅反射率 -*/
float R; /*- エネルギー反射率 -*/
} p, s;
float R_final; /*- エネルギー反射率の最終版 -*/
float phi; /*- 位相 -*/
float color_x, color_y, color_z; /*- xyz表色系 -*/
float temp_rgb_f[3];
/*- パラメータを得る -*/
float intensity = (float)m_intensity->getValue(frame);
float refractiveIndex = (float)m_refractiveIndex->getValue(frame);
float thickMax = (float)m_thickMax->getValue(frame);
float thickMin = (float)m_thickMin->getValue(frame);
float rgbGamma[3] = {(float)m_RGamma->getValue(frame),
(float)m_GGamma->getValue(frame),
(float)m_BGamma->getValue(frame)};
float lensFactor = (float)m_lensFactor->getValue(frame);
/*- 入射角は0で固定 -*/
/*- 各境界での振幅反射率、振幅透過率の計算(PS偏光とも) -*/
/*- P偏光 -*/
p.r_ab = (1.0 - refractiveIndex) / (1.0 + refractiveIndex);
p.t_ab = (1.0f - p.r_ab) / refractiveIndex;
p.r_ba = -p.r_ab;
p.t_ba = (1.0f + p.r_ab) * refractiveIndex;
/*- S偏光 -*/
s.r_ab = (1.0 - refractiveIndex) / (1.0 + refractiveIndex);
s.t_ab = 1.0f + s.r_ab;
s.r_ba = -s.r_ab;
s.t_ba = 1.0f - s.r_ab;
for (j = 0; j < 256; j++) { /*- 膜厚d -*/
/*- 膜厚d(μm)の計算 -*/
d = thickMin + (thickMax - thickMin) * powf(((float)j / 255.0f), lensFactor);
/*- 膜厚が負になることもありうる。その場合は d = 0 に合わせる -*/
if (d < 0.0f)
d = 0.0f;
/*- これから積算するので、XYZ表色系各チャンネルの初期化 -*/
color_x = 0.0f;
color_y = 0.0f;
color_z = 0.0f;
for (ram = 0; ram < 34; ram++) { /*- 波長λ(380nm-710nm) -*/
/*- 波長λ(μm)の計算 -*/
rambda = 0.38f + 0.01f * (float)ram;
/*- 位相の計算 -*/
phi = 4.0f * PI * refractiveIndex * d / rambda;
/*- 薄膜の振幅反射率の計算(PS偏光とも) -*/
/*- P偏光 -*/
p.r_real = p.r_ab + p.t_ab * p.r_ba * p.t_ba * cosf(phi);
p.r_img = p.t_ab * p.r_ba * p.t_ba * sinf(phi);
/*- S偏光 -*/
s.r_real = s.r_ab + s.t_ab * s.r_ba * s.t_ba * cosf(phi);
s.r_img = s.t_ab * s.r_ba * s.t_ba * sinf(phi);
p.R = p.r_real * p.r_real + p.r_img * p.r_img;
s.R = s.r_real * s.r_real + s.r_img * s.r_img;
/*- エネルギー反射率 -*/
R_final = (p.R + s.R) / 2.0f;
color_x += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 0];
color_y += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 1];
color_z += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 2];
} /*- 次のramへ(波長λ) -*/
temp_rgb_f[0] = 3.240479f * color_x - 1.537150f * color_y - 0.498535f * color_z;
temp_rgb_f[1] = -0.969256f * color_x + 1.875992f * color_y + 0.041556f * color_z;
temp_rgb_f[2] = 0.055648f * color_x - 0.204043f * color_y + 1.057311f * color_z;
/*- オーバーフローをまるめる -*/
for (k = 0; k < 3; k++) {
if (temp_rgb_f[k] < 0.0f)
temp_rgb_f[k] = 0.0f;
/*- ガンマ処理 -*/
temp_rgb_f[k] = powf((temp_rgb_f[k] / 255.0f), rgbGamma[k]);
if (temp_rgb_f[k] >= 1.0f)
temp_rgb_f[k] = 1.0f;
}
bubbleColor[j].x = temp_rgb_f[0];
bubbleColor[j].y = temp_rgb_f[1];
bubbleColor[j].z = temp_rgb_f[2];
} /*- 次のjへ(膜厚d) -*/
}
//------------------------------------
Iwa_SpectrumFx::Iwa_SpectrumFx()
: m_intensity(1.0), m_refractiveIndex(1.25), m_thickMax(1.0), m_thickMin(0.0), m_RGamma(1.0), m_GGamma(1.0), m_BGamma(1.0), m_lensFactor(1.0), m_lightThres(1.0), m_lightIntensity(1.0)
{
addInputPort("Source", m_input);
addInputPort("Light", m_light);
bindParam(this, "intensity", m_intensity);
bindParam(this, "refractiveIndex", m_refractiveIndex);
bindParam(this, "thickMax", m_thickMax);
bindParam(this, "thickMin", m_thickMin);
bindParam(this, "RGamma", m_RGamma);
bindParam(this, "GGamma", m_GGamma);
bindParam(this, "BGamma", m_BGamma);
bindParam(this, "lensFactor", m_lensFactor);
bindParam(this, "lightThres", m_lightThres);
bindParam(this, "lightIntensity", m_lightIntensity);
m_intensity->setValueRange(0.0, 8.0);
m_refractiveIndex->setValueRange(1.0, 3.0);
m_thickMax->setValueRange(-1.5, 2.0);
m_thickMin->setValueRange(-1.5, 2.0);
m_RGamma->setValueRange(0.001, 1.0);
m_GGamma->setValueRange(0.001, 1.0);
m_BGamma->setValueRange(0.001, 1.0);
m_lensFactor->setValueRange(0.01, 10.0);
m_lightThres->setValueRange(-5.0, 1.0);
m_lightIntensity->setValueRange(0.0, 1.0);
}
//------------------------------------
void Iwa_SpectrumFx::doCompute(TTile &tile,
double frame,
const TRenderSettings &settings)
{
if (!m_input.isConnected())
return;
/*- 薄膜干渉色マップ -*/
float3 *bubbleColor;
TDimensionI dim(tile.getRaster()->getLx(), tile.getRaster()->getLy());
/*- 256段階で干渉色を計算 -*/
TRasterGR8P bubbleColor_ras(sizeof(float3) * 256, 1);
bubbleColor_ras->lock();
bubbleColor = (float3 *)bubbleColor_ras->getRawData();
/*- シャボン色マップの生成 -*/
calcBubbleMap(bubbleColor, frame);
/*- いったん素材をTileに収める -*/
m_input->compute(tile, frame, settings);
/*--------------------
ここで、Lightが刺さっていた場合は、Lightのアルファを使用&HDRThresでスクリーン合成
--------------------*/
TRasterP lightRas = 0;
if (m_light.isConnected()) {
TTile light_tile;
m_light->allocateAndCompute(light_tile, tile.m_pos, dim, tile.getRaster(), frame, settings);
lightRas = light_tile.getRaster();
lightRas->lock();
}
TRaster32P ras32 = (TRaster32P)tile.getRaster();
TRaster64P ras64 = (TRaster64P)tile.getRaster();
{
if (ras32) {
if (lightRas)
convertRasterWithLight<TRaster32P, TPixel32>(ras32,
dim,
bubbleColor,
(TRaster32P)lightRas,
(float)m_lightThres->getValue(frame),
(float)m_lightIntensity->getValue(frame));
else
convertRaster<TRaster32P, TPixel32>(ras32, dim, bubbleColor);
} else if (ras64) {
if (lightRas)
convertRasterWithLight<TRaster64P, TPixel64>(ras64,
dim,
bubbleColor,
(TRaster64P)lightRas,
(float)m_lightThres->getValue(frame),
(float)m_lightIntensity->getValue(frame));
else
convertRaster<TRaster64P, TPixel64>(ras64, dim, bubbleColor);
}
}
//メモリ解放
//brightness_ras->unlock();
bubbleColor_ras->unlock();
if (lightRas)
lightRas->unlock();
}
//------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::convertRaster(const RASTER ras,
TDimensionI dim,
float3 *bubbleColor)
{
float rr, gg, bb, aa;
float spec_r, spec_g, spec_b;
float brightness;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = ras->pixels(j);
for (int i = 0; i < dim.lx; i++) {
aa = (float)pix->m / PIXEL::maxChannelValue;
if (aa == 0.0f) /*- アルファが0なら変化なし -*/
{
pix++;
continue;
}
/*- depremutiplyはしないでおく -*/
rr = (float)pix->r / (float)PIXEL::maxChannelValue;
gg = (float)pix->g / (float)PIXEL::maxChannelValue;
bb = (float)pix->b / (float)PIXEL::maxChannelValue;
brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb;
/*- 反転 -*/
brightness = 1.0f - brightness;
/*- 輝度MAXの場合 -*/
if (brightness >= 1.0f) {
spec_r = bubbleColor[255].x * aa;
spec_g = bubbleColor[255].y * aa;
spec_b = bubbleColor[255].z * aa;
} else {
/*- 線形補間する -*/
int index = (int)(brightness * 255.0f);
float ratio = brightness * 255.0f - (float)index;
spec_r = bubbleColor[index].x * (1.0f - ratio) +
bubbleColor[index + 1].x * ratio;
spec_g = bubbleColor[index].y * (1.0f - ratio) +
bubbleColor[index + 1].y * ratio;
spec_b = bubbleColor[index].z * (1.0f - ratio) +
bubbleColor[index + 1].z * ratio;
spec_r *= aa;
spec_g *= aa;
spec_b *= aa;
}
/*- 元のピクセルに書き戻す -*/
float val;
/*- チャンネル範囲にクランプ -*/
val = spec_r * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = spec_g * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = spec_b * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
pix++;
}
}
}
//------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::convertRasterWithLight(const RASTER ras,
TDimensionI dim,
float3 *bubbleColor,
const RASTER lightRas,
float lightThres,
float lightIntensity)
{
float rr, gg, bb, aa;
float spec_r, spec_g, spec_b;
float brightness;
for (int j = 0; j < dim.ly; j++) {
PIXEL *light_pix = lightRas->pixels(j);
PIXEL *pix = ras->pixels(j);
for (int i = 0; i < dim.lx; i++) {
aa = (float)light_pix->m / PIXEL::maxChannelValue;
if (aa == 0.0f) /*- アルファが0なら透明にする -*/
{
*pix = PIXEL::Transparent;
light_pix++;
pix++;
continue;
}
/*- depremutiplyはしないでおく -*/
rr = (float)pix->r / (float)PIXEL::maxChannelValue;
gg = (float)pix->g / (float)PIXEL::maxChannelValue;
bb = (float)pix->b / (float)PIXEL::maxChannelValue;
brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb;
/*- 反転 -*/
brightness = 1.0f - brightness;
/*- 輝度MAXの場合 -*/
if (brightness >= 1.0f) {
spec_r = bubbleColor[255].x;
spec_g = bubbleColor[255].y;
spec_b = bubbleColor[255].z;
} else {
/*- 線形補間する -*/
int index = (int)(brightness * 255.0f);
float ratio = brightness * 255.0f - (float)index;
spec_r = bubbleColor[index].x * (1.0f - ratio) +
bubbleColor[index + 1].x * ratio;
spec_g = bubbleColor[index].y * (1.0f - ratio) +
bubbleColor[index + 1].y * ratio;
spec_b = bubbleColor[index].z * (1.0f - ratio) +
bubbleColor[index + 1].z * ratio;
}
/*- ここで、Light画像とのスクリーン合成を行う -*/
float HDR_Factor;
if (aa <= lightThres ||
lightThres == 1.0f)
HDR_Factor = 0.0;
else
HDR_Factor = lightIntensity * (aa - lightThres) / (1.0 - lightThres);
float light_r = (float)light_pix->r / (float)PIXEL::maxChannelValue;
float light_g = (float)light_pix->g / (float)PIXEL::maxChannelValue;
float light_b = (float)light_pix->b / (float)PIXEL::maxChannelValue;
/*- スクリーン合成結果と虹色をHDR_Factorで混ぜる -*/
spec_r = (1.0f - HDR_Factor) * spec_r +
HDR_Factor * (spec_r + light_r - spec_r * light_r);
spec_g = (1.0f - HDR_Factor) * spec_g +
HDR_Factor * (spec_g + light_g - spec_g * light_g);
spec_b = (1.0f - HDR_Factor) * spec_b +
HDR_Factor * (spec_b + light_b - spec_b * light_b);
spec_r *= aa;
spec_g *= aa;
spec_b *= aa;
/*- 元のピクセルに書き戻す -*/
float val;
/*- チャンネル範囲にクランプ -*/
val = spec_r * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = spec_g * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = spec_b * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
pix->m = light_pix->m;
pix++;
light_pix++;
}
}
}
/*------------------------------------
素材タイルを0〜1に正規化して格納
------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::setSourceRasters(
const RASTER ras,
float4 *in_out_tile_host,
const RASTER light_ras,
float4 *light_host,
TDimensionI dim,
bool useLight)
{
float4 *chann_p = in_out_tile_host;
float4 *lightChann_p = light_host;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = ras->pixels(j);
PIXEL *lightPix = (useLight) ? light_ras->pixels(j) : 0;
for (int i = 0; i < dim.lx; i++) {
(*chann_p).x = (float)pix->r / (float)PIXEL::maxChannelValue;
(*chann_p).y = (float)pix->g / (float)PIXEL::maxChannelValue;
(*chann_p).z = (float)pix->b / (float)PIXEL::maxChannelValue;
(*chann_p).w = (float)pix->m / (float)PIXEL::maxChannelValue;
pix++;
chann_p++;
if (useLight) {
(*lightChann_p).x = (float)lightPix->r / (float)PIXEL::maxChannelValue;
(*lightChann_p).y = (float)lightPix->g / (float)PIXEL::maxChannelValue;
(*lightChann_p).z = (float)lightPix->b / (float)PIXEL::maxChannelValue;
(*lightChann_p).w = (float)lightPix->m / (float)PIXEL::maxChannelValue;
lightPix++;
lightChann_p++;
}
}
}
}
/*------------------------------------
出力結果をChannel値に変換してタイルに格納
------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::outputRasters(const RASTER outRas,
float4 *in_out_tile_host,
TDimensionI dim)
{
float4 *chann_p = in_out_tile_host;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = outRas->pixels(j);
for (int i = 0; i < dim.lx; i++) {
float val;
val = (*chann_p).x * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = (*chann_p).y * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = (*chann_p).z * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
val = (*chann_p).w * (float)PIXEL::maxChannelValue + 0.5f;
pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
pix++;
chann_p++;
}
}
}
//------------------------------------
bool Iwa_SpectrumFx::doGetBBox(double frame,
TRectD &bBox,
const TRenderSettings &info)
{
if (!m_input.isConnected()) {
bBox = TRectD();
return false;
}
return m_input->doGetBBox(frame, bBox, info);
}
//------------------------------------
bool Iwa_SpectrumFx::canHandle(const TRenderSettings &info,
double frame)
{
return true;
}
FX_PLUGIN_IDENTIFIER(Iwa_SpectrumFx, "iwa_SpectrumFx")