Blob Blame Raw
/*------------------------------------
Iwa_SpectrumFx
参照画像を位相差として、干渉色を出力する
------------------------------------*/

#include "iwa_spectrumfx.h"

#include "iwa_cie_d65.h"
#include "iwa_xyz.h"

namespace
{
const float PI = 3.14159265f;
}

/*------------------------------------
 シャボン色マップの生成
------------------------------------*/
void Iwa_SpectrumFx::calcBubbleMap(float3 *bubbleColor, double frame)
{
	int j, k;	 /*- bubbleColor[j][k] = [256][3] -*/
	float d;	  /*- 膜厚(μm) -*/
	int ram;	  /*- 波長のfor文用 -*/
	float rambda; /*- 波長(μm) -*/
	struct REFLECTIVITY {
		float r_ab, t_ab, r_ba, t_ba; /*- 各境界での振幅反射率、振幅透過率 -*/
		float r_real, r_img;		  /*- 薄膜の振幅反射率 -*/
		float R;					  /*- エネルギー反射率 -*/
	} p, s;
	float R_final;					 /*- エネルギー反射率の最終版 -*/
	float phi;						 /*- 位相 -*/
	float color_x, color_y, color_z; /*- xyz表色系 -*/

	float temp_rgb_f[3];

	/*- パラメータを得る -*/
	float intensity = (float)m_intensity->getValue(frame);
	float refractiveIndex = (float)m_refractiveIndex->getValue(frame);
	float thickMax = (float)m_thickMax->getValue(frame);
	float thickMin = (float)m_thickMin->getValue(frame);
	float rgbGamma[3] = {(float)m_RGamma->getValue(frame),
						 (float)m_GGamma->getValue(frame),
						 (float)m_BGamma->getValue(frame)};
	float lensFactor = (float)m_lensFactor->getValue(frame);

	/*- 入射角は0で固定 -*/

	/*- 各境界での振幅反射率、振幅透過率の計算(PS偏光とも) -*/
	/*- P偏光 -*/
	p.r_ab = (1.0 - refractiveIndex) / (1.0 + refractiveIndex);
	p.t_ab = (1.0f - p.r_ab) / refractiveIndex;
	p.r_ba = -p.r_ab;
	p.t_ba = (1.0f + p.r_ab) * refractiveIndex;
	/*- S偏光 -*/
	s.r_ab = (1.0 - refractiveIndex) / (1.0 + refractiveIndex);
	s.t_ab = 1.0f + s.r_ab;
	s.r_ba = -s.r_ab;
	s.t_ba = 1.0f - s.r_ab;

	for (j = 0; j < 256; j++) { /*- 膜厚d -*/
		/*- 膜厚d(μm)の計算 -*/
		d = thickMin + (thickMax - thickMin) * powf(((float)j / 255.0f), lensFactor);

		/*-  膜厚が負になることもありうる。その場合は d = 0 に合わせる -*/
		if (d < 0.0f)
			d = 0.0f;

		/*- これから積算するので、XYZ表色系各チャンネルの初期化 -*/
		color_x = 0.0f;
		color_y = 0.0f;
		color_z = 0.0f;

		for (ram = 0; ram < 34; ram++) { /*- 波長λ(380nm-710nm) -*/
			/*- 波長λ(μm)の計算 -*/
			rambda = 0.38f + 0.01f * (float)ram;
			/*- 位相の計算 -*/
			phi = 4.0f * PI * refractiveIndex * d / rambda;
			/*- 薄膜の振幅反射率の計算(PS偏光とも) -*/
			/*- P偏光 -*/
			p.r_real = p.r_ab + p.t_ab * p.r_ba * p.t_ba * cosf(phi);
			p.r_img = p.t_ab * p.r_ba * p.t_ba * sinf(phi);
			/*- S偏光 -*/
			s.r_real = s.r_ab + s.t_ab * s.r_ba * s.t_ba * cosf(phi);
			s.r_img = s.t_ab * s.r_ba * s.t_ba * sinf(phi);

			p.R = p.r_real * p.r_real + p.r_img * p.r_img;
			s.R = s.r_real * s.r_real + s.r_img * s.r_img;

			/*- エネルギー反射率 -*/
			R_final = (p.R + s.R) / 2.0f;

			color_x += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 0];
			color_y += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 1];
			color_z += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 2];

		} /*- 次のramへ(波長λ) -*/

		temp_rgb_f[0] = 3.240479f * color_x - 1.537150f * color_y - 0.498535f * color_z;
		temp_rgb_f[1] = -0.969256f * color_x + 1.875992f * color_y + 0.041556f * color_z;
		temp_rgb_f[2] = 0.055648f * color_x - 0.204043f * color_y + 1.057311f * color_z;

		/*- オーバーフローをまるめる -*/
		for (k = 0; k < 3; k++) {
			if (temp_rgb_f[k] < 0.0f)
				temp_rgb_f[k] = 0.0f;

			/*- ガンマ処理 -*/
			temp_rgb_f[k] = powf((temp_rgb_f[k] / 255.0f), rgbGamma[k]);

			if (temp_rgb_f[k] >= 1.0f)
				temp_rgb_f[k] = 1.0f;
		}
		bubbleColor[j].x = temp_rgb_f[0];
		bubbleColor[j].y = temp_rgb_f[1];
		bubbleColor[j].z = temp_rgb_f[2];

	} /*- 次のjへ(膜厚d) -*/
}

//------------------------------------
Iwa_SpectrumFx::Iwa_SpectrumFx()
	: m_intensity(1.0), m_refractiveIndex(1.25), m_thickMax(1.0), m_thickMin(0.0), m_RGamma(1.0), m_GGamma(1.0), m_BGamma(1.0), m_lensFactor(1.0), m_lightThres(1.0), m_lightIntensity(1.0)
{
	addInputPort("Source", m_input);
	addInputPort("Light", m_light);
	bindParam(this, "intensity", m_intensity);
	bindParam(this, "refractiveIndex", m_refractiveIndex);
	bindParam(this, "thickMax", m_thickMax);
	bindParam(this, "thickMin", m_thickMin);
	bindParam(this, "RGamma", m_RGamma);
	bindParam(this, "GGamma", m_GGamma);
	bindParam(this, "BGamma", m_BGamma);
	bindParam(this, "lensFactor", m_lensFactor);
	bindParam(this, "lightThres", m_lightThres);
	bindParam(this, "lightIntensity", m_lightIntensity);

	m_intensity->setValueRange(0.0, 8.0);
	m_refractiveIndex->setValueRange(1.0, 3.0);
	m_thickMax->setValueRange(-1.5, 2.0);
	m_thickMin->setValueRange(-1.5, 2.0);
	m_RGamma->setValueRange(0.001, 1.0);
	m_GGamma->setValueRange(0.001, 1.0);
	m_BGamma->setValueRange(0.001, 1.0);
	m_lensFactor->setValueRange(0.01, 10.0);
	m_lightThres->setValueRange(-5.0, 1.0);
	m_lightIntensity->setValueRange(0.0, 1.0);
}

//------------------------------------
void Iwa_SpectrumFx::doCompute(TTile &tile,
							   double frame,
							   const TRenderSettings &settings)
{
	if (!m_input.isConnected())
		return;

	/*- 薄膜干渉色マップ -*/
	float3 *bubbleColor;

	TDimensionI dim(tile.getRaster()->getLx(), tile.getRaster()->getLy());

	/*- 256段階で干渉色を計算 -*/
	TRasterGR8P bubbleColor_ras(sizeof(float3) * 256, 1);
	bubbleColor_ras->lock();
	bubbleColor = (float3 *)bubbleColor_ras->getRawData();

	/*- シャボン色マップの生成 -*/
	calcBubbleMap(bubbleColor, frame);

	/*- いったん素材をTileに収める -*/
	m_input->compute(tile, frame, settings);

	/*--------------------
	 ここで、Lightが刺さっていた場合は、Lightのアルファを使用&HDRThresでスクリーン合成
	--------------------*/
	TRasterP lightRas = 0;
	if (m_light.isConnected()) {
		TTile light_tile;
		m_light->allocateAndCompute(light_tile, tile.m_pos, dim, tile.getRaster(), frame, settings);

		lightRas = light_tile.getRaster();
		lightRas->lock();
	}

	TRaster32P ras32 = (TRaster32P)tile.getRaster();
	TRaster64P ras64 = (TRaster64P)tile.getRaster();
	{
		if (ras32) {
			if (lightRas)
				convertRasterWithLight<TRaster32P, TPixel32>(ras32,
															 dim,
															 bubbleColor,
															 (TRaster32P)lightRas,
															 (float)m_lightThres->getValue(frame),
															 (float)m_lightIntensity->getValue(frame));
			else
				convertRaster<TRaster32P, TPixel32>(ras32, dim, bubbleColor);
		} else if (ras64) {
			if (lightRas)
				convertRasterWithLight<TRaster64P, TPixel64>(ras64,
															 dim,
															 bubbleColor,
															 (TRaster64P)lightRas,
															 (float)m_lightThres->getValue(frame),
															 (float)m_lightIntensity->getValue(frame));
			else
				convertRaster<TRaster64P, TPixel64>(ras64, dim, bubbleColor);
		}
	}

	//メモリ解放
	//brightness_ras->unlock();
	bubbleColor_ras->unlock();
	if (lightRas)
		lightRas->unlock();
}

//------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::convertRaster(const RASTER ras,
								   TDimensionI dim,
								   float3 *bubbleColor)
{
	float rr, gg, bb, aa;
	float spec_r, spec_g, spec_b;
	float brightness;
	for (int j = 0; j < dim.ly; j++) {
		PIXEL *pix = ras->pixels(j);
		for (int i = 0; i < dim.lx; i++) {
			aa = (float)pix->m / PIXEL::maxChannelValue;
			if (aa == 0.0f) /*- アルファが0なら変化なし -*/
			{
				pix++;
				continue;
			}
			/*- depremutiplyはしないでおく -*/
			rr = (float)pix->r / (float)PIXEL::maxChannelValue;
			gg = (float)pix->g / (float)PIXEL::maxChannelValue;
			bb = (float)pix->b / (float)PIXEL::maxChannelValue;
			brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb;

			/*- 反転 -*/
			brightness = 1.0f - brightness;
			/*- 輝度MAXの場合 -*/
			if (brightness >= 1.0f) {
				spec_r = bubbleColor[255].x * aa;
				spec_g = bubbleColor[255].y * aa;
				spec_b = bubbleColor[255].z * aa;
			} else {
				/*- 線形補間する -*/
				int index = (int)(brightness * 255.0f);
				float ratio = brightness * 255.0f - (float)index;

				spec_r = bubbleColor[index].x * (1.0f - ratio) +
						 bubbleColor[index + 1].x * ratio;
				spec_g = bubbleColor[index].y * (1.0f - ratio) +
						 bubbleColor[index + 1].y * ratio;
				spec_b = bubbleColor[index].z * (1.0f - ratio) +
						 bubbleColor[index + 1].z * ratio;
				spec_r *= aa;
				spec_g *= aa;
				spec_b *= aa;
			}
			/*- 元のピクセルに書き戻す -*/
			float val;
			/*- チャンネル範囲にクランプ -*/
			val = spec_r * (float)PIXEL::maxChannelValue + 0.5f;
			pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = spec_g * (float)PIXEL::maxChannelValue + 0.5f;
			pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = spec_b * (float)PIXEL::maxChannelValue + 0.5f;
			pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);

			pix++;
		}
	}
}

//------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::convertRasterWithLight(const RASTER ras,
											TDimensionI dim,
											float3 *bubbleColor,
											const RASTER lightRas,
											float lightThres,
											float lightIntensity)
{
	float rr, gg, bb, aa;
	float spec_r, spec_g, spec_b;
	float brightness;
	for (int j = 0; j < dim.ly; j++) {
		PIXEL *light_pix = lightRas->pixels(j);
		PIXEL *pix = ras->pixels(j);
		for (int i = 0; i < dim.lx; i++) {
			aa = (float)light_pix->m / PIXEL::maxChannelValue;
			if (aa == 0.0f) /*- アルファが0なら透明にする -*/
			{
				*pix = PIXEL::Transparent;
				light_pix++;
				pix++;
				continue;
			}
			/*- depremutiplyはしないでおく -*/
			rr = (float)pix->r / (float)PIXEL::maxChannelValue;
			gg = (float)pix->g / (float)PIXEL::maxChannelValue;
			bb = (float)pix->b / (float)PIXEL::maxChannelValue;
			brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb;

			/*- 反転 -*/
			brightness = 1.0f - brightness;
			/*- 輝度MAXの場合 -*/
			if (brightness >= 1.0f) {
				spec_r = bubbleColor[255].x;
				spec_g = bubbleColor[255].y;
				spec_b = bubbleColor[255].z;
			} else {
				/*- 線形補間する -*/
				int index = (int)(brightness * 255.0f);
				float ratio = brightness * 255.0f - (float)index;

				spec_r = bubbleColor[index].x * (1.0f - ratio) +
						 bubbleColor[index + 1].x * ratio;
				spec_g = bubbleColor[index].y * (1.0f - ratio) +
						 bubbleColor[index + 1].y * ratio;
				spec_b = bubbleColor[index].z * (1.0f - ratio) +
						 bubbleColor[index + 1].z * ratio;
			}

			/*- ここで、Light画像とのスクリーン合成を行う -*/
			float HDR_Factor;
			if (aa <= lightThres ||
				lightThres == 1.0f)
				HDR_Factor = 0.0;
			else
				HDR_Factor = lightIntensity * (aa - lightThres) / (1.0 - lightThres);

			float light_r = (float)light_pix->r / (float)PIXEL::maxChannelValue;
			float light_g = (float)light_pix->g / (float)PIXEL::maxChannelValue;
			float light_b = (float)light_pix->b / (float)PIXEL::maxChannelValue;
			/*- スクリーン合成結果と虹色をHDR_Factorで混ぜる -*/
			spec_r = (1.0f - HDR_Factor) * spec_r +
					 HDR_Factor * (spec_r + light_r - spec_r * light_r);
			spec_g = (1.0f - HDR_Factor) * spec_g +
					 HDR_Factor * (spec_g + light_g - spec_g * light_g);
			spec_b = (1.0f - HDR_Factor) * spec_b +
					 HDR_Factor * (spec_b + light_b - spec_b * light_b);

			spec_r *= aa;
			spec_g *= aa;
			spec_b *= aa;

			/*- 元のピクセルに書き戻す -*/
			float val;
			/*- チャンネル範囲にクランプ -*/
			val = spec_r * (float)PIXEL::maxChannelValue + 0.5f;
			pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = spec_g * (float)PIXEL::maxChannelValue + 0.5f;
			pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = spec_b * (float)PIXEL::maxChannelValue + 0.5f;
			pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);

			pix->m = light_pix->m;

			pix++;
			light_pix++;
		}
	}
}

/*------------------------------------
 素材タイルを0〜1に正規化して格納
------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::setSourceRasters(
	const RASTER ras,
	float4 *in_out_tile_host,
	const RASTER light_ras,
	float4 *light_host,
	TDimensionI dim,
	bool useLight)
{

	float4 *chann_p = in_out_tile_host;
	float4 *lightChann_p = light_host;

	for (int j = 0; j < dim.ly; j++) {
		PIXEL *pix = ras->pixels(j);
		PIXEL *lightPix = (useLight) ? light_ras->pixels(j) : 0;
		for (int i = 0; i < dim.lx; i++) {
			(*chann_p).x = (float)pix->r / (float)PIXEL::maxChannelValue;
			(*chann_p).y = (float)pix->g / (float)PIXEL::maxChannelValue;
			(*chann_p).z = (float)pix->b / (float)PIXEL::maxChannelValue;
			(*chann_p).w = (float)pix->m / (float)PIXEL::maxChannelValue;
			pix++;
			chann_p++;

			if (useLight) {
				(*lightChann_p).x = (float)lightPix->r / (float)PIXEL::maxChannelValue;
				(*lightChann_p).y = (float)lightPix->g / (float)PIXEL::maxChannelValue;
				(*lightChann_p).z = (float)lightPix->b / (float)PIXEL::maxChannelValue;
				(*lightChann_p).w = (float)lightPix->m / (float)PIXEL::maxChannelValue;
				lightPix++;
				lightChann_p++;
			}
		}
	}
}

/*------------------------------------
 出力結果をChannel値に変換してタイルに格納
------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::outputRasters(const RASTER outRas,
								   float4 *in_out_tile_host,
								   TDimensionI dim)
{
	float4 *chann_p = in_out_tile_host;
	for (int j = 0; j < dim.ly; j++) {
		PIXEL *pix = outRas->pixels(j);
		for (int i = 0; i < dim.lx; i++) {
			float val;
			val = (*chann_p).x * (float)PIXEL::maxChannelValue + 0.5f;
			pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = (*chann_p).y * (float)PIXEL::maxChannelValue + 0.5f;
			pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = (*chann_p).z * (float)PIXEL::maxChannelValue + 0.5f;
			pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			val = (*chann_p).w * (float)PIXEL::maxChannelValue + 0.5f;
			pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val);
			pix++;
			chann_p++;
		}
	}
}

//------------------------------------

bool Iwa_SpectrumFx::doGetBBox(double frame,
							   TRectD &bBox,
							   const TRenderSettings &info)
{
	if (!m_input.isConnected()) {
		bBox = TRectD();
		return false;
	}
	return m_input->doGetBBox(frame, bBox, info);
}

//------------------------------------

bool Iwa_SpectrumFx::canHandle(const TRenderSettings &info,
							   double frame)
{
	return true;
}

FX_PLUGIN_IDENTIFIER(Iwa_SpectrumFx, "iwa_SpectrumFx")