/*! @file cmyblas2.c
* \brief Level 2 Blas operations
*
* <pre>
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
* </pre>
* Purpose:
* Level 2 BLAS operations: solves and matvec, written in C.
* Note:
* This is only used when the system lacks an efficient BLAS library.
* </pre>
*/
/*
* File name: cmyblas2.c
*/
#include "slu_scomplex.h"
/*! \brief Solves a dense UNIT lower triangular system
*
* The unit lower
* triangular matrix is stored in a 2D array M(1:nrow,1:ncol).
* The solution will be returned in the rhs vector.
*/
void clsolve ( int ldm, int ncol, complex *M, complex *rhs )
{
int k;
complex x0, x1, x2, x3, temp;
complex *M0;
complex *Mki0, *Mki1, *Mki2, *Mki3;
register int firstcol = 0;
M0 = &M[0];
while ( firstcol < ncol - 3 ) { /* Do 4 columns */
Mki0 = M0 + 1;
Mki1 = Mki0 + ldm + 1;
Mki2 = Mki1 + ldm + 1;
Mki3 = Mki2 + ldm + 1;
x0 = rhs[firstcol];
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x1, &rhs[firstcol+1], &temp);
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x2, &rhs[firstcol+2], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&x2, &x2, &temp);
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x3, &rhs[firstcol+3], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&x3, &x3, &temp);
cc_mult(&temp, &x2, Mki2); Mki2++;
c_sub(&x3, &x3, &temp);
rhs[++firstcol] = x1;
rhs[++firstcol] = x2;
rhs[++firstcol] = x3;
++firstcol;
for (k = firstcol; k < ncol; k++) {
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x2, Mki2); Mki2++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x3, Mki3); Mki3++;
c_sub(&rhs[k], &rhs[k], &temp);
}
M0 += 4 * ldm + 4;
}
if ( firstcol < ncol - 1 ) { /* Do 2 columns */
Mki0 = M0 + 1;
Mki1 = Mki0 + ldm + 1;
x0 = rhs[firstcol];
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x1, &rhs[firstcol+1], &temp);
rhs[++firstcol] = x1;
++firstcol;
for (k = firstcol; k < ncol; k++) {
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&rhs[k], &rhs[k], &temp);
}
}
}
/*! \brief Solves a dense upper triangular system.
*
* The upper triangular matrix is
* stored in a 2-dim array M(1:ldm,1:ncol). The solution will be returned
* in the rhs vector.
*/
void
cusolve ( ldm, ncol, M, rhs )
int ldm; /* in */
int ncol; /* in */
complex *M; /* in */
complex *rhs; /* modified */
{
complex xj, temp;
int jcol, j, irow;
jcol = ncol - 1;
for (j = 0; j < ncol; j++) {
c_div(&xj, &rhs[jcol], &M[jcol + jcol*ldm]); /* M(jcol, jcol) */
rhs[jcol] = xj;
for (irow = 0; irow < jcol; irow++) {
cc_mult(&temp, &xj, &M[irow+jcol*ldm]); /* M(irow, jcol) */
c_sub(&rhs[irow], &rhs[irow], &temp);
}
jcol--;
}
}
/*! \brief Performs a dense matrix-vector multiply: Mxvec = Mxvec + M * vec.
*
* The input matrix is M(1:nrow,1:ncol); The product is returned in Mxvec[].
*/
void cmatvec ( ldm, nrow, ncol, M, vec, Mxvec )
int ldm; /* in -- leading dimension of M */
int nrow; /* in */
int ncol; /* in */
complex *M; /* in */
complex *vec; /* in */
complex *Mxvec; /* in/out */
{
complex vi0, vi1, vi2, vi3;
complex *M0, temp;
complex *Mki0, *Mki1, *Mki2, *Mki3;
register int firstcol = 0;
int k;
M0 = &M[0];
while ( firstcol < ncol - 3 ) { /* Do 4 columns */
Mki0 = M0;
Mki1 = Mki0 + ldm;
Mki2 = Mki1 + ldm;
Mki3 = Mki2 + ldm;
vi0 = vec[firstcol++];
vi1 = vec[firstcol++];
vi2 = vec[firstcol++];
vi3 = vec[firstcol++];
for (k = 0; k < nrow; k++) {
cc_mult(&temp, &vi0, Mki0); Mki0++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
cc_mult(&temp, &vi1, Mki1); Mki1++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
cc_mult(&temp, &vi2, Mki2); Mki2++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
cc_mult(&temp, &vi3, Mki3); Mki3++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
}
M0 += 4 * ldm;
}
while ( firstcol < ncol ) { /* Do 1 column */
Mki0 = M0;
vi0 = vec[firstcol++];
for (k = 0; k < nrow; k++) {
cc_mult(&temp, &vi0, Mki0); Mki0++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
}
M0 += ldm;
}
}