/*
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
*/
#include <math.h>
#include "slu_cdefs.h"
int cgst04(int n, int nrhs, complex *x, int ldx, complex *xact,
int ldxact, float rcond, float *resid)
{
/*
Purpose
=======
CGST04 computes the difference between a computed solution and the
true solution to a system of linear equations.
RESID = ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
where RCOND is the reciprocal of the condition number and EPS is the
machine epsilon.
Arguments
=========
N (input) INT
The number of rows of the matrices X and XACT. N >= 0.
NRHS (input) INT
The number of columns of the matrices X and XACT. NRHS >= 0.
X (input) COMPLEX PRECISION array, dimension (LDX,NRHS)
The computed solution vectors. Each vector is stored as a
column of the matrix X.
LDX (input) INT
The leading dimension of the array X. LDX >= max(1,N).
XACT (input) COMPLEX PRECISION array, dimension( LDX, NRHS )
The exact solution vectors. Each vector is stored as a
column of the matrix XACT.
LDXACT (input) INT
The leading dimension of the array XACT. LDXACT >= max(1,N).
RCOND (input) COMPLEX PRECISION
The reciprocal of the condition number of the coefficient
matrix in the system of equations.
RESID (output) FLOAT PRECISION
The maximum over the NRHS solution vectors of
( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS )
=====================================================================
*/
/* Table of constant values */
int c__1 = 1;
/* System generated locals */
float d__1, d__2, d__3, d__4;
/* Local variables */
int i, j, n__1;
int ix;
float xnorm;
float eps;
float diffnm;
/* Function prototypes */
extern int icamax_(int *, complex *, int *);
/* Quick exit if N = 0 or NRHS = 0. */
if ( n <= 0 || nrhs <= 0 ) {
*resid = 0.;
return 0;
}
/* Exit with RESID = 1/EPS if RCOND is invalid. */
eps = slamch_("Epsilon");
if ( rcond < 0. ) {
*resid = 1. / eps;
return 0;
}
/* Compute the maximum of norm(X - XACT) / ( norm(XACT) * EPS )
over all the vectors X and XACT . */
*resid = 0.;
for (j = 0; j < nrhs; ++j) {
n__1 = n;
ix = icamax_(&n__1, &xact[j*ldxact], &c__1);
xnorm = (d__1 = xact[ix-1 + j*ldxact].r, fabs(d__1)) +
(d__2 = xact[ix-1 + j*ldxact].i, fabs(d__2));
diffnm = 0.;
for (i = 0; i < n; ++i) {
/* Computing MAX */
d__3 = diffnm;
d__4 = (d__1 = x[i+j*ldx].r-xact[i+j*ldxact].r, fabs(d__1)) +
(d__2 = x[i+j*ldx].i-xact[i+j*ldxact].i, fabs(d__2));
diffnm = SUPERLU_MAX(d__3,d__4);
}
if (xnorm <= 0.) {
if (diffnm > 0.) {
*resid = 1. / eps;
}
} else {
/* Computing MAX */
d__1 = *resid, d__2 = diffnm / xnorm * rcond;
*resid = SUPERLU_MAX(d__1,d__2);
}
}
if (*resid * eps < 1.) {
*resid /= eps;
}
return 0;
} /* cgst04_ */