/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
#if !defined(HEMV) && !defined(HEMVREV)
#define MYAXPY AXPYU_K
#define MYDOT DOTU_K
#elif defined HEMV
#define MYAXPY AXPYU_K
#define MYDOT DOTC_K
#else
#define MYAXPY AXPYC_K
#define MYDOT DOTU_K
#endif
static int sbmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
FLOAT *a, *x, *y;
BLASLONG lda, incx;
BLASLONG n, k, n_from, n_to;
BLASLONG i, length;
#ifndef COMPLEX
FLOAT result;
#else
FLOAT _Complex result;
#endif
a = (FLOAT *)args -> a;
x = (FLOAT *)args -> b;
y = (FLOAT *)args -> c;
lda = args -> lda;
incx = args -> ldb;
n = args -> n;
k = args -> k;
n_from = 0;
n_to = n;
if (range_m) {
n_from = *(range_m + 0);
n_to = *(range_m + 1);
a += n_from * lda * COMPSIZE;
}
if (range_n) y += *range_n * COMPSIZE;
if (incx != 1) {
COPY_K(n, x, incx, buffer, 1);
x = buffer;
buffer += ((COMPSIZE * n + 1023) & ~1023);
}
SCAL_K(n, 0, 0, ZERO,
#ifdef COMPLEX
ZERO,
#endif
y, 1, NULL, 0, NULL, 0);
for (i = n_from; i < n_to; i++) {
#ifndef LOWER
length = i;
if (length > k) length = k;
MYAXPY(length, 0, 0,
*(x + i * COMPSIZE + 0),
#ifdef COMPLEX
*(x + i * COMPSIZE + 1),
#endif
a + (k - length) * COMPSIZE, 1, y + (i - length) * COMPSIZE, 1, NULL, 0);
#if !defined(HEMV) && !defined(HEMVREV)
result = MYDOT(length + 1, a + (k - length) * COMPSIZE, 1, x + (i - length) * COMPSIZE, 1);
#else
result = MYDOT(length , a + (k - length) * COMPSIZE, 1, x + (i - length) * COMPSIZE, 1);
#endif
#ifndef COMPLEX
*(y + i * COMPSIZE + 0) += result;
#else
#if !defined(HEMV) && !defined(HEMVREV)
*(y + i * COMPSIZE + 0) += CREAL(result);
*(y + i * COMPSIZE + 1) += CIMAG(result);
#else
*(y + i * COMPSIZE + 0) += CREAL(result) + *(a + k * COMPSIZE) * *(x + i * COMPSIZE + 0);
*(y + i * COMPSIZE + 1) += CIMAG(result) + *(a + k * COMPSIZE) * *(x + i * COMPSIZE + 1);
#endif
#endif
#else
length = k;
if (n - i - 1 < k) length = n - i - 1;
MYAXPY(length, 0, 0,
*(x + i * COMPSIZE + 0),
#ifdef COMPLEX
*(x + i * COMPSIZE + 1),
#endif
a + COMPSIZE, 1, y + (i + 1) * COMPSIZE, 1, NULL, 0);
#if !defined(HEMV) && !defined(HEMVREV)
result = MYDOT(length + 1, a, 1, x + i * COMPSIZE, 1);
#else
result = MYDOT(length , a + COMPSIZE, 1, x + (i + 1) * COMPSIZE, 1) ;
#endif
#ifndef COMPLEX
*(y + i * COMPSIZE + 0) += result;
#else
#if !defined(HEMV) && !defined(HEMVREV)
*(y + i * COMPSIZE + 0) += CREAL(result);
*(y + i * COMPSIZE + 1) += CIMAG(result);
#else
*(y + i * COMPSIZE + 0) += CREAL(result) + *a * *(x + i * COMPSIZE + 0);
*(y + i * COMPSIZE + 1) += CIMAG(result) + *a * *(x + i * COMPSIZE + 1);
#endif
#endif
#endif
a += lda * COMPSIZE;
}
return 0;
}
#ifndef COMPLEX
int CNAME(BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
#else
int CNAME(BLASLONG n, BLASLONG k, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
#endif
blas_arg_t args;
blas_queue_t queue[MAX_CPU_NUMBER];
BLASLONG range_m[MAX_CPU_NUMBER + 1];
BLASLONG range_n[MAX_CPU_NUMBER];
BLASLONG width, i, num_cpu;
double dnum;
int mask = 7;
#ifdef SMP
#ifndef COMPLEX
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_REAL;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_REAL;
#else
int mode = BLAS_SINGLE | BLAS_REAL;
#endif
#else
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_COMPLEX;
#else
int mode = BLAS_SINGLE | BLAS_COMPLEX;
#endif
#endif
#endif
args.n = n;
args.k = k;
args.a = (void *)a;
args.b = (void *)x;
args.c = (void *)buffer;
args.lda = lda;
args.ldb = incx;
args.ldc = incy;
dnum = (double)n * (double)n / (double)nthreads;
num_cpu = 0;
if (n < 2 * k) {
#ifndef LOWER
range_m[MAX_CPU_NUMBER] = n;
i = 0;
while (i < n){
if (nthreads - num_cpu > 1) {
double di = (double)(n - i);
if (di * di - dnum > 0) {
width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
} else {
width = n - i;
}
if (width < 16) width = 16;
if (width > n - i) width = n - i;
} else {
width = n - i;
}
range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width;
range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16);
queue[num_cpu].mode = mode;
queue[num_cpu].routine = sbmv_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1];
queue[num_cpu].range_n = &range_n[num_cpu];
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i += width;
}
#else
range_m[0] = 0;
i = 0;
while (i < n){
if (nthreads - num_cpu > 1) {
double di = (double)(n - i);
if (di * di - dnum > 0) {
width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
} else {
width = n - i;
}
if (width < 16) width = 16;
if (width > n - i) width = n - i;
} else {
width = n - i;
}
range_m[num_cpu + 1] = range_m[num_cpu] + width;
range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16);
queue[num_cpu].mode = mode;
queue[num_cpu].routine = sbmv_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].range_m = &range_m[num_cpu];
queue[num_cpu].range_n = &range_n[num_cpu];
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i += width;
}
#endif
} else {
range_m[0] = 0;
i = n;
while (i > 0){
width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
if (width < 4) width = 4;
if (i < width) width = i;
range_m[num_cpu + 1] = range_m[num_cpu] + width;
range_n[num_cpu] = num_cpu * ((n + 15) & ~15);
queue[num_cpu].mode = mode;
queue[num_cpu].routine = sbmv_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].range_m = &range_m[num_cpu];
queue[num_cpu].range_n = &range_n[num_cpu];
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i -= width;
}
}
if (num_cpu) {
queue[0].sa = NULL;
queue[0].sb = buffer + num_cpu * (((n + 255) & ~255) + 16) * COMPSIZE;
queue[num_cpu - 1].next = NULL;
exec_blas(num_cpu, queue);
}
for (i = 1; i < num_cpu; i ++) {
AXPYU_K(n, 0, 0,
#ifndef COMPLEX
ONE,
#else
ONE, ZERO,
#endif
buffer + range_n[i] * COMPSIZE, 1, buffer, 1, NULL, 0);
}
AXPYU_K(n, 0, 0,
#ifndef COMPLEX
alpha,
#else
alpha[0], alpha[1],
#endif
buffer, 1, y, incy, NULL, 0);
return 0;
}