/*! @file dcolumn_bmod.c
* \brief performs numeric block updates
*
* <pre>
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
* </pre>
*/
#include <stdio.h>
#include <stdlib.h>
#include "slu_ddefs.h"
/*
* Function prototypes
*/
void dusolve(int, int, double*, double*);
void dlsolve(int, int, double*, double*);
void dmatvec(int, int, int, double*, double*, double*);
/*! \brief
*
* <pre>
* Purpose:
* ========
* Performs numeric block updates (sup-col) in topological order.
* It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
* Special processing on the supernodal portion of L\U[*,j]
* Return value: 0 - successful return
* > 0 - number of bytes allocated when run out of space
* </pre>
*/
int
dcolumn_bmod (
const int jcol, /* in */
const int nseg, /* in */
double *dense, /* in */
double *tempv, /* working array */
int *segrep, /* in */
int *repfnz, /* in */
int fpanelc, /* in -- first column in the current panel */
GlobalLU_t *Glu, /* modified */
SuperLUStat_t *stat /* output */
)
{
#ifdef _CRAY
_fcd ftcs1 = _cptofcd("L", strlen("L")),
ftcs2 = _cptofcd("N", strlen("N")),
ftcs3 = _cptofcd("U", strlen("U"));
#endif
int incx = 1, incy = 1;
double alpha, beta;
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = no of columns in supernode
* nsupr = no of rows in supernode (used as leading dimension)
* luptr = location of supernodal LU-block in storage
* kfnz = first nonz in the k-th supernodal segment
* no_zeros = no of leading zeros in a supernodal U-segment
*/
double ukj, ukj1, ukj2;
int luptr, luptr1, luptr2;
int fsupc, nsupc, nsupr, segsze;
int nrow; /* No of rows in the matrix of matrix-vector */
int jcolp1, jsupno, k, ksub, krep, krep_ind, ksupno;
register int lptr, kfnz, isub, irow, i;
register int no_zeros, new_next;
int ufirst, nextlu;
int fst_col; /* First column within small LU update */
int d_fsupc; /* Distance between the first column of the current
panel and the first column of the current snode. */
int *xsup, *supno;
int *lsub, *xlsub;
double *lusup;
int *xlusup;
int nzlumax;
double *tempv1;
double zero = 0.0;
double one = 1.0;
double none = -1.0;
int mem_error;
flops_t *ops = stat->ops;
xsup = Glu->xsup;
supno = Glu->supno;
lsub = Glu->lsub;
xlsub = Glu->xlsub;
lusup = Glu->lusup;
xlusup = Glu->xlusup;
nzlumax = Glu->nzlumax;
jcolp1 = jcol + 1;
jsupno = supno[jcol];
/*
* For each nonz supernode segment of U[*,j] in topological order
*/
k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++) {
krep = segrep[k];
k--;
ksupno = supno[krep];
if ( jsupno != ksupno ) { /* Outside the rectangular supernode */
fsupc = xsup[ksupno];
fst_col = SUPERLU_MAX ( fsupc, fpanelc );
/* Distance from the current supernode to the current panel;
d_fsupc=0 if fsupc > fpanelc. */
d_fsupc = fst_col - fsupc;
luptr = xlusup[fst_col] + d_fsupc;
lptr = xlsub[fsupc] + d_fsupc;
kfnz = repfnz[krep];
kfnz = SUPERLU_MAX ( kfnz, fpanelc );
segsze = krep - kfnz + 1;
nsupc = krep - fst_col + 1;
nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
nrow = nsupr - d_fsupc - nsupc;
krep_ind = lptr + nsupc - 1;
ops[TRSV] += segsze * (segsze - 1);
ops[GEMV] += 2 * nrow * segsze;
/*
* Case 1: Update U-segment of size 1 -- col-col update
*/
if ( segsze == 1 ) {
ukj = dense[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
dense[irow] -= ukj*lusup[luptr];
luptr++;
}
} else if ( segsze <= 3 ) {
ukj = dense[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc-1;
ukj1 = dense[lsub[krep_ind - 1]];
luptr1 = luptr - nsupr;
if ( segsze == 2 ) { /* Case 2: 2cols-col update */
ukj -= ukj1 * lusup[luptr1];
dense[lsub[krep_ind]] = ukj;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++;
luptr1++;
dense[irow] -= ( ukj*lusup[luptr]
+ ukj1*lusup[luptr1] );
}
} else { /* Case 3: 3cols-col update */
ukj2 = dense[lsub[krep_ind - 2]];
luptr2 = luptr1 - nsupr;
ukj1 -= ukj2 * lusup[luptr2-1];
ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
dense[lsub[krep_ind]] = ukj;
dense[lsub[krep_ind-1]] = ukj1;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++;
luptr1++;
luptr2++;
dense[irow] -= ( ukj*lusup[luptr]
+ ukj1*lusup[luptr1] + ukj2*lusup[luptr2] );
}
}
} else {
/*
* Case: sup-col update
* Perform a triangular solve and block update,
* then scatter the result of sup-col update to dense
*/
no_zeros = kfnz - fst_col;
/* Copy U[*,j] segment from dense[*] to tempv[*] */
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
tempv[i] = dense[irow];
++isub;
}
/* Dense triangular solve -- start effective triangle */
luptr += nsupr * no_zeros + no_zeros;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#else
dtrsv_( "L", "N", "U", &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#endif
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
alpha = one;
beta = zero;
#ifdef _CRAY
SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#else
dgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#endif
#else
dlsolve ( nsupr, segsze, &lusup[luptr], tempv );
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
dmatvec (nsupr, nrow , segsze, &lusup[luptr], tempv, tempv1);
#endif
/* Scatter tempv[] into SPA dense[] as a temporary storage */
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
dense[irow] = tempv[i];
tempv[i] = zero;
++isub;
}
/* Scatter tempv1[] into SPA dense[] */
for (i = 0; i < nrow; i++) {
irow = lsub[isub];
dense[irow] -= tempv1[i];
tempv1[i] = zero;
++isub;
}
}
} /* if jsupno ... */
} /* for each segment... */
/*
* Process the supernodal portion of L\U[*,j]
*/
nextlu = xlusup[jcol];
fsupc = xsup[jsupno];
/* Copy the SPA dense into L\U[*,j] */
new_next = nextlu + xlsub[fsupc+1] - xlsub[fsupc];
while ( new_next > nzlumax ) {
if (mem_error = dLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu))
return (mem_error);
lusup = Glu->lusup;
lsub = Glu->lsub;
}
for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) {
irow = lsub[isub];
lusup[nextlu] = dense[irow];
dense[irow] = zero;
++nextlu;
}
xlusup[jcolp1] = nextlu; /* Close L\U[*,jcol] */
/* For more updates within the panel (also within the current supernode),
* should start from the first column of the panel, or the first column
* of the supernode, whichever is bigger. There are 2 cases:
* 1) fsupc < fpanelc, then fst_col := fpanelc
* 2) fsupc >= fpanelc, then fst_col := fsupc
*/
fst_col = SUPERLU_MAX ( fsupc, fpanelc );
if ( fst_col < jcol ) {
/* Distance between the current supernode and the current panel.
d_fsupc=0 if fsupc >= fpanelc. */
d_fsupc = fst_col - fsupc;
lptr = xlsub[fsupc] + d_fsupc;
luptr = xlusup[fst_col] + d_fsupc;
nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
nsupc = jcol - fst_col; /* Excluding jcol */
nrow = nsupr - d_fsupc - nsupc;
/* Points to the beginning of jcol in snode L\U(jsupno) */
ufirst = xlusup[jcol] + d_fsupc;
ops[TRSV] += nsupc * (nsupc - 1);
ops[GEMV] += 2 * nrow * nsupc;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr],
&nsupr, &lusup[ufirst], &incx );
#else
dtrsv_( "L", "N", "U", &nsupc, &lusup[luptr],
&nsupr, &lusup[ufirst], &incx );
#endif
alpha = none; beta = one; /* y := beta*y + alpha*A*x */
#ifdef _CRAY
SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
&lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
#else
dgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
&lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
#endif
#else
dlsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] );
dmatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc],
&lusup[ufirst], tempv );
/* Copy updates from tempv[*] into lusup[*] */
isub = ufirst + nsupc;
for (i = 0; i < nrow; i++) {
lusup[isub] -= tempv[i];
tempv[i] = 0.0;
++isub;
}
#endif
} /* if fst_col < jcol ... */
return 0;
}