Blob Blame Raw

/*! @file zlacon.c
 * \brief Estimates the 1-norm
 *
 * <pre>
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 * </pre>
 */
#include <math.h>
#include "slu_Cnames.h"
#include "slu_dcomplex.h"

/*! \brief
 *
 * <pre>
 *   Purpose   
 *   =======   
 *
 *   ZLACON estimates the 1-norm of a square matrix A.   
 *   Reverse communication is used for evaluating matrix-vector products. 
 * 
 *
 *   Arguments   
 *   =========   
 *
 *   N      (input) INT
 *          The order of the matrix.  N >= 1.   
 *
 *   V      (workspace) DOUBLE COMPLEX PRECISION array, dimension (N)   
 *          On the final return, V = A*W,  where  EST = norm(V)/norm(W)   
 *          (W is not returned).   
 *
 *   X      (input/output) DOUBLE COMPLEX PRECISION array, dimension (N)   
 *          On an intermediate return, X should be overwritten by   
 *                A * X,   if KASE=1,   
 *                A' * X,  if KASE=2,
 *          where A' is the conjugate transpose of A,
 *         and ZLACON must be re-called with all the other parameters   
 *          unchanged.   
 *
 *
 *   EST    (output) DOUBLE PRECISION   
 *          An estimate (a lower bound) for norm(A).   
 *
 *   KASE   (input/output) INT
 *          On the initial call to ZLACON, KASE should be 0.   
 *          On an intermediate return, KASE will be 1 or 2, indicating   
 *          whether X should be overwritten by A * X  or A' * X.   
 *          On the final return from ZLACON, KASE will again be 0.   
 *
 *   Further Details   
 *   ======= =======   
 *
 *   Contributed by Nick Higham, University of Manchester.   
 *   Originally named CONEST, dated March 16, 1988.   
 *
 *   Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of 
 *   a real or complex matrix, with applications to condition estimation", 
 *   ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.   
 *   ===================================================================== 
 * </pre>
 */

int
zlacon_(int *n, doublecomplex *v, doublecomplex *x, double *est, int *kase)

{


    /* Table of constant values */
    int c__1 = 1;
    doublecomplex      zero = {0.0, 0.0};
    doublecomplex      one = {1.0, 0.0};

    /* System generated locals */
    double d__1;
    
    /* Local variables */
    static int iter;
    static int jump, jlast;
    static double altsgn, estold;
    static int i, j;
    double temp;
    double safmin;
    extern double dlamch_(char *);
    extern int izmax1_(int *, doublecomplex *, int *);
    extern double dzsum1_(int *, doublecomplex *, int *);

    safmin = dlamch_("Safe minimum");
    if ( *kase == 0 ) {
	for (i = 0; i < *n; ++i) {
	    x[i].r = 1. / (double) (*n);
	    x[i].i = 0.;
	}
	*kase = 1;
	jump = 1;
	return 0;
    }

    switch (jump) {
	case 1:  goto L20;
	case 2:  goto L40;
	case 3:  goto L70;
	case 4:  goto L110;
	case 5:  goto L140;
    }

    /*     ................ ENTRY   (JUMP = 1)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X. */
  L20:
    if (*n == 1) {
	v[0] = x[0];
	*est = z_abs(&v[0]);
	/*        ... QUIT */
	goto L150;
    }
    *est = dzsum1_(n, x, &c__1);

    for (i = 0; i < *n; ++i) {
	d__1 = z_abs(&x[i]);
	if (d__1 > safmin) {
	    d__1 = 1 / d__1;
	    x[i].r *= d__1;
	    x[i].i *= d__1;
	} else {
	    x[i] = one;
	}
    }
    *kase = 2;
    jump = 2;
    return 0;

    /*     ................ ENTRY   (JUMP = 2)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
L40:
    j = izmax1_(n, &x[0], &c__1);
    --j;
    iter = 2;

    /*     MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
L50:
    for (i = 0; i < *n; ++i) x[i] = zero;
    x[j] = one;
    *kase = 1;
    jump = 3;
    return 0;

    /*     ................ ENTRY   (JUMP = 3)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L70:
#ifdef _CRAY
    CCOPY(n, x, &c__1, v, &c__1);
#else
    zcopy_(n, x, &c__1, v, &c__1);
#endif
    estold = *est;
    *est = dzsum1_(n, v, &c__1);


L90:
    /*     TEST FOR CYCLING. */
    if (*est <= estold) goto L120;

    for (i = 0; i < *n; ++i) {
	d__1 = z_abs(&x[i]);
	if (d__1 > safmin) {
	    d__1 = 1 / d__1;
	    x[i].r *= d__1;
	    x[i].i *= d__1;
	} else {
	    x[i] = one;
	}
    }
    *kase = 2;
    jump = 4;
    return 0;

    /*     ................ ENTRY   (JUMP = 4)   
	   X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L110:
    jlast = j;
    j = izmax1_(n, &x[0], &c__1);
    --j;
    if (x[jlast].r != (d__1 = x[j].r, fabs(d__1)) && iter < 5) {
	++iter;
	goto L50;
    }

    /*     ITERATION COMPLETE.  FINAL STAGE. */
L120:
    altsgn = 1.;
    for (i = 1; i <= *n; ++i) {
	x[i-1].r = altsgn * ((double)(i - 1) / (double)(*n - 1) + 1.);
	x[i-1].i = 0.;
	altsgn = -altsgn;
    }
    *kase = 1;
    jump = 5;
    return 0;
    
    /*     ................ ENTRY   (JUMP = 5)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L140:
    temp = dzsum1_(n, x, &c__1) / (double)(*n * 3) * 2.;
    if (temp > *est) {
#ifdef _CRAY
	CCOPY(n, &x[0], &c__1, &v[0], &c__1);
#else
	zcopy_(n, &x[0], &c__1, &v[0], &c__1);
#endif
	*est = temp;
    }

L150:
    *kase = 0;
    return 0;

} /* zlacon_ */