Blob Blame Raw
      SUBROUTINE ZGBMVF( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
     $                   BETA, Y, INCY )
*     .. Scalar Arguments ..
      COMPLEX*16         ALPHA, BETA
      INTEGER            INCX, INCY, KL, KU, LDA, M, N
      CHARACTER*1        TRANS
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGBMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or
*
*     y := alpha*conjg( A' )*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
*  Parameters
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  KL     - INTEGER.
*           On entry, KL specifies the number of sub-diagonals of the
*           matrix A. KL must satisfy  0 .le. KL.
*           Unchanged on exit.
*
*  KU     - INTEGER.
*           On entry, KU specifies the number of super-diagonals of the
*           matrix A. KU must satisfy  0 .le. KU.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16      .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
*           Before entry, the leading ( kl + ku + 1 ) by n part of the
*           array A must contain the matrix of coefficients, supplied
*           column by column, with the leading diagonal of the matrix in
*           row ( ku + 1 ) of the array, the first super-diagonal
*           starting at position 2 in row ku, the first sub-diagonal
*           starting at position 1 in row ( ku + 2 ), and so on.
*           Elements in the array A that do not correspond to elements
*           in the band matrix (such as the top left ku by ku triangle)
*           are not referenced.
*           The following program segment will transfer a band matrix
*           from conventional full matrix storage to band storage:
*
*                 DO 20, J = 1, N
*                    K = KU + 1 - J
*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
*                       A( K + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( kl + ku + 1 ).
*           Unchanged on exit.
*
*  X      - COMPLEX*16       array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - COMPLEX*16      .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - COMPLEX*16       array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry, the incremented array Y must contain the
*           vector y. On exit, Y is overwritten by the updated vector y.
*
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER        ( ONE  = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX*16         ZERO
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     .. Local Scalars ..
      COMPLEX*16         TEMP
      INTEGER            I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
     $                   LENX, LENY
      LOGICAL            NOCONJ, NOTRANS, XCONJ
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'R' ).AND.
     $         .NOT.LSAME( TRANS, 'C' ).AND.
     $         .NOT.LSAME( TRANS, 'O' ).AND.
     $         .NOT.LSAME( TRANS, 'U' ).AND.
     $         .NOT.LSAME( TRANS, 'S' ).AND.
     $         .NOT.LSAME( TRANS, 'D' )      )THEN
         INFO = 1
      ELSE IF( M.LT.0 )THEN
         INFO = 2
      ELSE IF( N.LT.0 )THEN
         INFO = 3
      ELSE IF( KL.LT.0 )THEN
         INFO = 4
      ELSE IF( KU.LT.0 )THEN
         INFO = 5
      ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
         INFO = 8
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 10
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 13
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'ZGBMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
      NOCONJ = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
     $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'U' ))

      NOTRANS = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' )
     $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'S' ))

      XCONJ  = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
     $     .OR. LSAME( TRANS, 'R' ) .OR. LSAME( TRANS, 'C' ))
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF(NOTRANS)THEN
         LENX = N
         LENY = M
      ELSE
         LENX = M
         LENY = N
      END IF
      IF( INCX.GT.0 )THEN
         KX = 1
      ELSE
         KX = 1 - ( LENX - 1 )*INCX
      END IF
      IF( INCY.GT.0 )THEN
         KY = 1
      ELSE
         KY = 1 - ( LENY - 1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the band part of A.
*
*     First form  y := beta*y.
*
      IF( BETA.NE.ONE )THEN
         IF( INCY.EQ.1 )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 10, I = 1, LENY
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               DO 20, I = 1, LENY
                  Y( I ) = BETA*Y( I )
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF( BETA.EQ.ZERO )THEN
               DO 30, I = 1, LENY
                  Y( IY ) = ZERO
                  IY      = IY   + INCY
   30          CONTINUE
            ELSE
               DO 40, I = 1, LENY
                  Y( IY ) = BETA*Y( IY )
                  IY      = IY           + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
      IF( ALPHA.EQ.ZERO )
     $   RETURN

      KUP1 = KU + 1

      IF(XCONJ)THEN

      IF(NOTRANS)THEN
*
*        Form  y := alpha*A*x + y.
*
         JX = KX
         IF( INCY.EQ.1 )THEN
            DO 60, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( I ) = Y( I ) + TEMP*A( K + I, J )
   50             CONTINUE
               ELSE
                  DO 55, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( I ) = Y( I ) + TEMP*DCONJG(A( K + I, J ))
   55             CONTINUE
               END IF

               END IF
               JX = JX + INCX
   60       CONTINUE
         ELSE
            DO 80, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  IY   = KY
                  K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
                     IY      = IY      + INCY
   70             CONTINUE
                  ELSE
                  DO 75, I = MAX( 1, J - KU ), MIN( M, J + KL )
                    Y( IY ) = Y( IY ) + TEMP*DCONJG(A( K + I, J ))
                    IY      = IY      + INCY
   75             CONTINUE
               END IF

               END IF
               JX = JX + INCX
               IF( J.GT.KU )
     $            KY = KY + INCY
   80       CONTINUE
         END IF
      ELSE
*
*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
*
         JY = KY
         IF( INCX.EQ.1 )THEN
            DO 110, J = 1, N
               TEMP = ZERO
               K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + A( K + I, J )*X( I )
   90             CONTINUE
               ELSE
                  DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + DCONJG( A( K + I, J ) )*X( I )
  100             CONTINUE
               END IF
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  110       CONTINUE
         ELSE
            DO 140, J = 1, N
               TEMP = ZERO
               IX   = KX
               K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + A( K + I, J )*X( IX )
                     IX   = IX   + INCX
  120             CONTINUE
               ELSE
                  DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + DCONJG( A( K + I, J ) )*X( IX )
                     IX   = IX   + INCX
  130             CONTINUE
               END IF
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
               IF( J.GT.KU )
     $            KX = KX + INCX
  140       CONTINUE
         END IF
      END IF

      ELSE

      IF(NOTRANS)THEN
*
*        Form  y := alpha*A*x + y.
*
         JX = KX
         IF( INCY.EQ.1 )THEN
            DO 160, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*DCONJG(X( JX ))
                  K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 150, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( I ) = Y( I ) + TEMP*A( K + I, J )
  150             CONTINUE
               ELSE
                  DO 155, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( I ) = Y( I ) + TEMP*DCONJG(A( K + I, J ))
  155             CONTINUE
               END IF

               END IF
               JX = JX + INCX
  160       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*DCONJG(X( JX ))
                  IY   = KY
                  K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 170, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
                     IY      = IY      + INCY
  170             CONTINUE
                  ELSE
                  DO 175, I = MAX( 1, J - KU ), MIN( M, J + KL )
                    Y( IY ) = Y( IY ) + TEMP*DCONJG(A( K + I, J ))
                    IY      = IY      + INCY
  175             CONTINUE
               END IF

               END IF
               JX = JX + INCX
               IF( J.GT.KU )
     $            KY = KY + INCY
  180       CONTINUE
         END IF
      ELSE
*
*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
*
         JY = KY
         IF( INCX.EQ.1 )THEN
            DO 210, J = 1, N
               TEMP = ZERO
               K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 190, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + A( K + I, J )*DCONJG(X( I ))
 190             CONTINUE
               ELSE
                  DO 200, I = MAX( 1, J - KU ), MIN( M, J + KL )
                 TEMP = TEMP + DCONJG( A( K + I, J ) )*DCONJG(X( I ))
  200             CONTINUE
               END IF
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  210       CONTINUE
         ELSE
            DO 240, J = 1, N
               TEMP = ZERO
               IX   = KX
               K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 220, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + A( K + I, J )*DCONJG(X( IX ))
                     IX   = IX   + INCX
  220             CONTINUE
               ELSE
                  DO 230, I = MAX( 1, J - KU ), MIN( M, J + KL )
                TEMP = TEMP + DCONJG( A( K + I, J ) )*DCONJG(X(IX ))
                     IX   = IX   + INCX
  230             CONTINUE
               END IF
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
               IF( J.GT.KU )
     $            KX = KX + INCX
  240       CONTINUE
         END IF
      END IF

      END IF

*
      RETURN
*
*     End of ZGBMV .
*
      END