Blob Blame Raw
      SUBROUTINE ZSYMMF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO
      INTEGER            M, N, LDA, LDB, LDC
      COMPLEX*16         ALPHA, BETA
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZSYMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where  alpha and beta are scalars, A is a symmetric matrix and  B and
*  C are m by n matrices.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  symmetric matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  symmetric matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16      .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least max( 1, n ).
*           Unchanged on exit.
*
*  B      - COMPLEX*16       array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - COMPLEX*16      .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, K, NROWA
      COMPLEX*16         TEMP1, TEMP2
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER        ( ONE  = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX*16         ZERO
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Executable Statements ..
*
*     Set NROWA as the number of rows of A.
*
      IF( LSAME( SIDE, 'L' ) )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.LSAME( SIDE, 'L' ) ).AND.
     $         ( .NOT.LSAME( SIDE, 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER              ).AND.
     $         ( .NOT.LSAME( UPLO, 'L' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 9
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'ZSYMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( BETA.EQ.ZERO )THEN
            DO 20, J = 1, N
               DO 10, I = 1, M
                  C( I, J ) = ZERO
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               DO 30, I = 1, M
                  C( I, J ) = BETA*C( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( SIDE, 'L' ) )THEN
*
*        Form  C := alpha*A*B + beta*C.
*
         IF( UPPER )THEN
            DO 70, J = 1, N
               DO 60, I = 1, M
                  TEMP1 = ALPHA*B( I, J )
                  TEMP2 = ZERO
                  DO 50, K = 1, I - 1
                     C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
                     TEMP2     = TEMP2     + B( K, J )*A( K, I )
   50             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           TEMP1*A( I, I ) + ALPHA*TEMP2
                  END IF
   60          CONTINUE
   70       CONTINUE
         ELSE
            DO 100, J = 1, N
               DO 90, I = M, 1, -1
                  TEMP1 = ALPHA*B( I, J )
                  TEMP2 = ZERO
                  DO 80, K = I + 1, M
                     C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
                     TEMP2     = TEMP2     + B( K, J )*A( K, I )
   80             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           TEMP1*A( I, I ) + ALPHA*TEMP2
                  END IF
   90          CONTINUE
  100       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*B*A + beta*C.
*
         DO 170, J = 1, N
            TEMP1 = ALPHA*A( J, J )
            IF( BETA.EQ.ZERO )THEN
               DO 110, I = 1, M
                  C( I, J ) = TEMP1*B( I, J )
  110          CONTINUE
            ELSE
               DO 120, I = 1, M
                  C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
  120          CONTINUE
            END IF
            DO 140, K = 1, J - 1
               IF( UPPER )THEN
                  TEMP1 = ALPHA*A( K, J )
               ELSE
                  TEMP1 = ALPHA*A( J, K )
               END IF
               DO 130, I = 1, M
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  130          CONTINUE
  140       CONTINUE
            DO 160, K = J + 1, N
               IF( UPPER )THEN
                  TEMP1 = ALPHA*A( J, K )
               ELSE
                  TEMP1 = ALPHA*A( K, J )
               END IF
               DO 150, I = 1, M
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  150          CONTINUE
  160       CONTINUE
  170    CONTINUE
      END IF
*
      RETURN
*
*     End of ZSYMM .
*
      END