| SUBROUTINE CTBMVF( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) |
| * .. Scalar Arguments .. |
| INTEGER INCX, K, LDA, N |
| CHARACTER*1 DIAG, TRANS, UPLO |
| * .. Array Arguments .. |
| COMPLEX A( LDA, * ), X( * ) |
| * .. |
| * |
| * Purpose |
| * ======= |
| * |
| * CTBMV performs one of the matrix-vector operations |
| * |
| * x := A*x, or x := A'*x, or x := conjg( A' )*x, |
| * |
| * where x is an n element vector and A is an n by n unit, or non-unit, |
| * upper or lower triangular band matrix, with ( k + 1 ) diagonals. |
| * |
| * Parameters |
| * ========== |
| * |
| * UPLO - CHARACTER*1. |
| * On entry, UPLO specifies whether the matrix is an upper or |
| * lower triangular matrix as follows: |
| * |
| * UPLO = 'U' or 'u' A is an upper triangular matrix. |
| * |
| * UPLO = 'L' or 'l' A is a lower triangular matrix. |
| * |
| * Unchanged on exit. |
| * |
| * TRANS - CHARACTER*1. |
| * On entry, TRANS specifies the operation to be performed as |
| * follows: |
| * |
| * TRANS = 'N' or 'n' x := A*x. |
| * |
| * TRANS = 'T' or 't' x := A'*x. |
| * |
| * TRANS = 'C' or 'c' x := conjg( A' )*x. |
| * |
| * Unchanged on exit. |
| * |
| * DIAG - CHARACTER*1. |
| * On entry, DIAG specifies whether or not A is unit |
| * triangular as follows: |
| * |
| * DIAG = 'U' or 'u' A is assumed to be unit triangular. |
| * |
| * DIAG = 'N' or 'n' A is not assumed to be unit |
| * triangular. |
| * |
| * Unchanged on exit. |
| * |
| * N - INTEGER. |
| * On entry, N specifies the order of the matrix A. |
| * N must be at least zero. |
| * Unchanged on exit. |
| * |
| * K - INTEGER. |
| * On entry with UPLO = 'U' or 'u', K specifies the number of |
| * super-diagonals of the matrix A. |
| * On entry with UPLO = 'L' or 'l', K specifies the number of |
| * sub-diagonals of the matrix A. |
| * K must satisfy 0 .le. K. |
| * Unchanged on exit. |
| * |
| * A - COMPLEX array of DIMENSION ( LDA, n ). |
| * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
| * by n part of the array A must contain the upper triangular |
| * band part of the matrix of coefficients, supplied column by |
| * column, with the leading diagonal of the matrix in row |
| * ( k + 1 ) of the array, the first super-diagonal starting at |
| * position 2 in row k, and so on. The top left k by k triangle |
| * of the array A is not referenced. |
| * The following program segment will transfer an upper |
| * triangular band matrix from conventional full matrix storage |
| * to band storage: |
| * |
| * DO 20, J = 1, N |
| * M = K + 1 - J |
| * DO 10, I = MAX( 1, J - K ), J |
| * A( M + I, J ) = matrix( I, J ) |
| * 10 CONTINUE |
| * 20 CONTINUE |
| * |
| * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
| * by n part of the array A must contain the lower triangular |
| * band part of the matrix of coefficients, supplied column by |
| * column, with the leading diagonal of the matrix in row 1 of |
| * the array, the first sub-diagonal starting at position 1 in |
| * row 2, and so on. The bottom right k by k triangle of the |
| * array A is not referenced. |
| * The following program segment will transfer a lower |
| * triangular band matrix from conventional full matrix storage |
| * to band storage: |
| * |
| * DO 20, J = 1, N |
| * M = 1 - J |
| * DO 10, I = J, MIN( N, J + K ) |
| * A( M + I, J ) = matrix( I, J ) |
| * 10 CONTINUE |
| * 20 CONTINUE |
| * |
| * Note that when DIAG = 'U' or 'u' the elements of the array A |
| * corresponding to the diagonal elements of the matrix are not |
| * referenced, but are assumed to be unity. |
| * Unchanged on exit. |
| * |
| * LDA - INTEGER. |
| * On entry, LDA specifies the first dimension of A as declared |
| * in the calling (sub) program. LDA must be at least |
| * ( k + 1 ). |
| * Unchanged on exit. |
| * |
| * X - COMPLEX array of dimension at least |
| * ( 1 + ( n - 1 )*abs( INCX ) ). |
| * Before entry, the incremented array X must contain the n |
| * element vector x. On exit, X is overwritten with the |
| * tranformed vector x. |
| * |
| * INCX - INTEGER. |
| * On entry, INCX specifies the increment for the elements of |
| * X. INCX must not be zero. |
| * Unchanged on exit. |
| * |
| * |
| * Level 2 Blas routine. |
| * |
| * -- Written on 22-October-1986. |
| * Jack Dongarra, Argonne National Lab. |
| * Jeremy Du Croz, Nag Central Office. |
| * Sven Hammarling, Nag Central Office. |
| * Richard Hanson, Sandia National Labs. |
| * |
| * |
| * .. Parameters .. |
| COMPLEX ZERO |
| PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) |
| * .. Local Scalars .. |
| COMPLEX TEMP |
| INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L |
| LOGICAL NOCONJ, NOUNIT |
| * .. External Functions .. |
| LOGICAL LSAME |
| EXTERNAL LSAME |
| * .. External Subroutines .. |
| EXTERNAL XERBLA |
| * .. Intrinsic Functions .. |
| INTRINSIC CONJG, MAX, MIN |
| * .. |
| * .. Executable Statements .. |
| * |
| * Test the input parameters. |
| * |
| INFO = 0 |
| IF ( .NOT.LSAME( UPLO , 'U' ).AND. |
| $ .NOT.LSAME( UPLO , 'L' ) )THEN |
| INFO = 1 |
| ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. |
| $ .NOT.LSAME( TRANS, 'T' ).AND. |
| $ .NOT.LSAME( TRANS, 'C' ) )THEN |
| INFO = 2 |
| ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. |
| $ .NOT.LSAME( DIAG , 'N' ) )THEN |
| INFO = 3 |
| ELSE IF( N.LT.0 )THEN |
| INFO = 4 |
| ELSE IF( K.LT.0 )THEN |
| INFO = 5 |
| ELSE IF( LDA.LT.( K + 1 ) )THEN |
| INFO = 7 |
| ELSE IF( INCX.EQ.0 )THEN |
| INFO = 9 |
| END IF |
| IF( INFO.NE.0 )THEN |
| CALL XERBLA( 'CTBMV ', INFO ) |
| RETURN |
| END IF |
| * |
| * Quick return if possible. |
| * |
| IF( N.EQ.0 ) |
| $ RETURN |
| * |
| NOCONJ = LSAME( TRANS, 'T' ) |
| NOUNIT = LSAME( DIAG , 'N' ) |
| * |
| * Set up the start point in X if the increment is not unity. This |
| * will be ( N - 1 )*INCX too small for descending loops. |
| * |
| IF( INCX.LE.0 )THEN |
| KX = 1 - ( N - 1 )*INCX |
| ELSE IF( INCX.NE.1 )THEN |
| KX = 1 |
| END IF |
| * |
| * Start the operations. In this version the elements of A are |
| * accessed sequentially with one pass through A. |
| * |
| IF( LSAME( TRANS, 'N' ) )THEN |
| * |
| * Form x := A*x. |
| * |
| IF( LSAME( UPLO, 'U' ) )THEN |
| KPLUS1 = K + 1 |
| IF( INCX.EQ.1 )THEN |
| DO 20, J = 1, N |
| IF( X( J ).NE.ZERO )THEN |
| TEMP = X( J ) |
| L = KPLUS1 - J |
| DO 10, I = MAX( 1, J - K ), J - 1 |
| X( I ) = X( I ) + TEMP*A( L + I, J ) |
| 10 CONTINUE |
| IF( NOUNIT ) |
| $ X( J ) = X( J )*A( KPLUS1, J ) |
| END IF |
| 20 CONTINUE |
| ELSE |
| JX = KX |
| DO 40, J = 1, N |
| IF( X( JX ).NE.ZERO )THEN |
| TEMP = X( JX ) |
| IX = KX |
| L = KPLUS1 - J |
| DO 30, I = MAX( 1, J - K ), J - 1 |
| X( IX ) = X( IX ) + TEMP*A( L + I, J ) |
| IX = IX + INCX |
| 30 CONTINUE |
| IF( NOUNIT ) |
| $ X( JX ) = X( JX )*A( KPLUS1, J ) |
| END IF |
| JX = JX + INCX |
| IF( J.GT.K ) |
| $ KX = KX + INCX |
| 40 CONTINUE |
| END IF |
| ELSE |
| IF( INCX.EQ.1 )THEN |
| DO 60, J = N, 1, -1 |
| IF( X( J ).NE.ZERO )THEN |
| TEMP = X( J ) |
| L = 1 - J |
| DO 50, I = MIN( N, J + K ), J + 1, -1 |
| X( I ) = X( I ) + TEMP*A( L + I, J ) |
| 50 CONTINUE |
| IF( NOUNIT ) |
| $ X( J ) = X( J )*A( 1, J ) |
| END IF |
| 60 CONTINUE |
| ELSE |
| KX = KX + ( N - 1 )*INCX |
| JX = KX |
| DO 80, J = N, 1, -1 |
| IF( X( JX ).NE.ZERO )THEN |
| TEMP = X( JX ) |
| IX = KX |
| L = 1 - J |
| DO 70, I = MIN( N, J + K ), J + 1, -1 |
| X( IX ) = X( IX ) + TEMP*A( L + I, J ) |
| IX = IX - INCX |
| 70 CONTINUE |
| IF( NOUNIT ) |
| $ X( JX ) = X( JX )*A( 1, J ) |
| END IF |
| JX = JX - INCX |
| IF( ( N - J ).GE.K ) |
| $ KX = KX - INCX |
| 80 CONTINUE |
| END IF |
| END IF |
| ELSE |
| * |
| * Form x := A'*x or x := conjg( A' )*x. |
| * |
| IF( LSAME( UPLO, 'U' ) )THEN |
| KPLUS1 = K + 1 |
| IF( INCX.EQ.1 )THEN |
| DO 110, J = N, 1, -1 |
| TEMP = X( J ) |
| L = KPLUS1 - J |
| IF( NOCONJ )THEN |
| IF( NOUNIT ) |
| $ TEMP = TEMP*A( KPLUS1, J ) |
| DO 90, I = J - 1, MAX( 1, J - K ), -1 |
| TEMP = TEMP + A( L + I, J )*X( I ) |
| 90 CONTINUE |
| ELSE |
| IF( NOUNIT ) |
| $ TEMP = TEMP*CONJG( A( KPLUS1, J ) ) |
| DO 100, I = J - 1, MAX( 1, J - K ), -1 |
| TEMP = TEMP + CONJG( A( L + I, J ) )*X( I ) |
| 100 CONTINUE |
| END IF |
| X( J ) = TEMP |
| 110 CONTINUE |
| ELSE |
| KX = KX + ( N - 1 )*INCX |
| JX = KX |
| DO 140, J = N, 1, -1 |
| TEMP = X( JX ) |
| KX = KX - INCX |
| IX = KX |
| L = KPLUS1 - J |
| IF( NOCONJ )THEN |
| IF( NOUNIT ) |
| $ TEMP = TEMP*A( KPLUS1, J ) |
| DO 120, I = J - 1, MAX( 1, J - K ), -1 |
| TEMP = TEMP + A( L + I, J )*X( IX ) |
| IX = IX - INCX |
| 120 CONTINUE |
| ELSE |
| IF( NOUNIT ) |
| $ TEMP = TEMP*CONJG( A( KPLUS1, J ) ) |
| DO 130, I = J - 1, MAX( 1, J - K ), -1 |
| TEMP = TEMP + CONJG( A( L + I, J ) )*X( IX ) |
| IX = IX - INCX |
| 130 CONTINUE |
| END IF |
| X( JX ) = TEMP |
| JX = JX - INCX |
| 140 CONTINUE |
| END IF |
| ELSE |
| IF( INCX.EQ.1 )THEN |
| DO 170, J = 1, N |
| TEMP = X( J ) |
| L = 1 - J |
| IF( NOCONJ )THEN |
| IF( NOUNIT ) |
| $ TEMP = TEMP*A( 1, J ) |
| DO 150, I = J + 1, MIN( N, J + K ) |
| TEMP = TEMP + A( L + I, J )*X( I ) |
| 150 CONTINUE |
| ELSE |
| IF( NOUNIT ) |
| $ TEMP = TEMP*CONJG( A( 1, J ) ) |
| DO 160, I = J + 1, MIN( N, J + K ) |
| TEMP = TEMP + CONJG( A( L + I, J ) )*X( I ) |
| 160 CONTINUE |
| END IF |
| X( J ) = TEMP |
| 170 CONTINUE |
| ELSE |
| JX = KX |
| DO 200, J = 1, N |
| TEMP = X( JX ) |
| KX = KX + INCX |
| IX = KX |
| L = 1 - J |
| IF( NOCONJ )THEN |
| IF( NOUNIT ) |
| $ TEMP = TEMP*A( 1, J ) |
| DO 180, I = J + 1, MIN( N, J + K ) |
| TEMP = TEMP + A( L + I, J )*X( IX ) |
| IX = IX + INCX |
| 180 CONTINUE |
| ELSE |
| IF( NOUNIT ) |
| $ TEMP = TEMP*CONJG( A( 1, J ) ) |
| DO 190, I = J + 1, MIN( N, J + K ) |
| TEMP = TEMP + CONJG( A( L + I, J ) )*X( IX ) |
| IX = IX + INCX |
| 190 CONTINUE |
| END IF |
| X( JX ) = TEMP |
| JX = JX + INCX |
| 200 CONTINUE |
| END IF |
| END IF |
| END IF |
| * |
| RETURN |
| * |
| * End of CTBMV . |
| * |
| END |