| SUBROUTINE DGBMVF( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, |
| $ BETA, Y, INCY ) |
| * .. Scalar Arguments .. |
| DOUBLE PRECISION ALPHA, BETA |
| INTEGER INCX, INCY, KL, KU, LDA, M, N |
| CHARACTER*1 TRANS |
| * .. Array Arguments .. |
| DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) |
| * .. |
| * |
| * Purpose |
| * ======= |
| * |
| * DGBMV performs one of the matrix-vector operations |
| * |
| * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are vectors and A is an |
| * m by n band matrix, with kl sub-diagonals and ku super-diagonals. |
| * |
| * Parameters |
| * ========== |
| * |
| * TRANS - CHARACTER*1. |
| * On entry, TRANS specifies the operation to be performed as |
| * follows: |
| * |
| * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
| * |
| * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
| * |
| * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
| * |
| * Unchanged on exit. |
| * |
| * M - INTEGER. |
| * On entry, M specifies the number of rows of the matrix A. |
| * M must be at least zero. |
| * Unchanged on exit. |
| * |
| * N - INTEGER. |
| * On entry, N specifies the number of columns of the matrix A. |
| * N must be at least zero. |
| * Unchanged on exit. |
| * |
| * KL - INTEGER. |
| * On entry, KL specifies the number of sub-diagonals of the |
| * matrix A. KL must satisfy 0 .le. KL. |
| * Unchanged on exit. |
| * |
| * KU - INTEGER. |
| * On entry, KU specifies the number of super-diagonals of the |
| * matrix A. KU must satisfy 0 .le. KU. |
| * Unchanged on exit. |
| * |
| * ALPHA - DOUBLE PRECISION. |
| * On entry, ALPHA specifies the scalar alpha. |
| * Unchanged on exit. |
| * |
| * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
| * Before entry, the leading ( kl + ku + 1 ) by n part of the |
| * array A must contain the matrix of coefficients, supplied |
| * column by column, with the leading diagonal of the matrix in |
| * row ( ku + 1 ) of the array, the first super-diagonal |
| * starting at position 2 in row ku, the first sub-diagonal |
| * starting at position 1 in row ( ku + 2 ), and so on. |
| * Elements in the array A that do not correspond to elements |
| * in the band matrix (such as the top left ku by ku triangle) |
| * are not referenced. |
| * The following program segment will transfer a band matrix |
| * from conventional full matrix storage to band storage: |
| * |
| * DO 20, J = 1, N |
| * K = KU + 1 - J |
| * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) |
| * A( K + I, J ) = matrix( I, J ) |
| * 10 CONTINUE |
| * 20 CONTINUE |
| * |
| * Unchanged on exit. |
| * |
| * LDA - INTEGER. |
| * On entry, LDA specifies the first dimension of A as declared |
| * in the calling (sub) program. LDA must be at least |
| * ( kl + ku + 1 ). |
| * Unchanged on exit. |
| * |
| * X - DOUBLE PRECISION array of DIMENSION at least |
| * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
| * and at least |
| * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
| * Before entry, the incremented array X must contain the |
| * vector x. |
| * Unchanged on exit. |
| * |
| * INCX - INTEGER. |
| * On entry, INCX specifies the increment for the elements of |
| * X. INCX must not be zero. |
| * Unchanged on exit. |
| * |
| * BETA - DOUBLE PRECISION. |
| * On entry, BETA specifies the scalar beta. When BETA is |
| * supplied as zero then Y need not be set on input. |
| * Unchanged on exit. |
| * |
| * Y - DOUBLE PRECISION array of DIMENSION at least |
| * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
| * and at least |
| * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
| * Before entry, the incremented array Y must contain the |
| * vector y. On exit, Y is overwritten by the updated vector y. |
| * |
| * INCY - INTEGER. |
| * On entry, INCY specifies the increment for the elements of |
| * Y. INCY must not be zero. |
| * Unchanged on exit. |
| * |
| * |
| * Level 2 Blas routine. |
| * |
| * -- Written on 22-October-1986. |
| * Jack Dongarra, Argonne National Lab. |
| * Jeremy Du Croz, Nag Central Office. |
| * Sven Hammarling, Nag Central Office. |
| * Richard Hanson, Sandia National Labs. |
| * |
| * .. Parameters .. |
| DOUBLE PRECISION ONE , ZERO |
| PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
| * .. Local Scalars .. |
| DOUBLE PRECISION TEMP |
| INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY, |
| $ LENX, LENY |
| * .. External Functions .. |
| LOGICAL LSAME |
| EXTERNAL LSAME |
| * .. External Subroutines .. |
| EXTERNAL XERBLA |
| * .. Intrinsic Functions .. |
| INTRINSIC MAX, MIN |
| * .. |
| * .. Executable Statements .. |
| * |
| * Test the input parameters. |
| * |
| INFO = 0 |
| IF ( .NOT.LSAME( TRANS, 'N' ).AND. |
| $ .NOT.LSAME( TRANS, 'T' ).AND. |
| $ .NOT.LSAME( TRANS, 'C' ) )THEN |
| INFO = 1 |
| ELSE IF( M.LT.0 )THEN |
| INFO = 2 |
| ELSE IF( N.LT.0 )THEN |
| INFO = 3 |
| ELSE IF( KL.LT.0 )THEN |
| INFO = 4 |
| ELSE IF( KU.LT.0 )THEN |
| INFO = 5 |
| ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN |
| INFO = 8 |
| ELSE IF( INCX.EQ.0 )THEN |
| INFO = 10 |
| ELSE IF( INCY.EQ.0 )THEN |
| INFO = 13 |
| END IF |
| IF( INFO.NE.0 )THEN |
| CALL XERBLA( 'DGBMV ', INFO ) |
| RETURN |
| END IF |
| * |
| * Quick return if possible. |
| * |
| IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. |
| $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) |
| $ RETURN |
| * |
| * Set LENX and LENY, the lengths of the vectors x and y, and set |
| * up the start points in X and Y. |
| * |
| IF( LSAME( TRANS, 'N' ) )THEN |
| LENX = N |
| LENY = M |
| ELSE |
| LENX = M |
| LENY = N |
| END IF |
| IF( INCX.GT.0 )THEN |
| KX = 1 |
| ELSE |
| KX = 1 - ( LENX - 1 )*INCX |
| END IF |
| IF( INCY.GT.0 )THEN |
| KY = 1 |
| ELSE |
| KY = 1 - ( LENY - 1 )*INCY |
| END IF |
| * |
| * Start the operations. In this version the elements of A are |
| * accessed sequentially with one pass through the band part of A. |
| * |
| * First form y := beta*y. |
| * |
| IF( BETA.NE.ONE )THEN |
| IF( INCY.EQ.1 )THEN |
| IF( BETA.EQ.ZERO )THEN |
| DO 10, I = 1, LENY |
| Y( I ) = ZERO |
| 10 CONTINUE |
| ELSE |
| DO 20, I = 1, LENY |
| Y( I ) = BETA*Y( I ) |
| 20 CONTINUE |
| END IF |
| ELSE |
| IY = KY |
| IF( BETA.EQ.ZERO )THEN |
| DO 30, I = 1, LENY |
| Y( IY ) = ZERO |
| IY = IY + INCY |
| 30 CONTINUE |
| ELSE |
| DO 40, I = 1, LENY |
| Y( IY ) = BETA*Y( IY ) |
| IY = IY + INCY |
| 40 CONTINUE |
| END IF |
| END IF |
| END IF |
| IF( ALPHA.EQ.ZERO ) |
| $ RETURN |
| KUP1 = KU + 1 |
| IF( LSAME( TRANS, 'N' ) )THEN |
| * |
| * Form y := alpha*A*x + y. |
| * |
| JX = KX |
| IF( INCY.EQ.1 )THEN |
| DO 60, J = 1, N |
| IF( X( JX ).NE.ZERO )THEN |
| TEMP = ALPHA*X( JX ) |
| K = KUP1 - J |
| DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL ) |
| Y( I ) = Y( I ) + TEMP*A( K + I, J ) |
| 50 CONTINUE |
| END IF |
| JX = JX + INCX |
| 60 CONTINUE |
| ELSE |
| DO 80, J = 1, N |
| IF( X( JX ).NE.ZERO )THEN |
| TEMP = ALPHA*X( JX ) |
| IY = KY |
| K = KUP1 - J |
| DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL ) |
| Y( IY ) = Y( IY ) + TEMP*A( K + I, J ) |
| IY = IY + INCY |
| 70 CONTINUE |
| END IF |
| JX = JX + INCX |
| IF( J.GT.KU ) |
| $ KY = KY + INCY |
| 80 CONTINUE |
| END IF |
| ELSE |
| * |
| * Form y := alpha*A'*x + y. |
| * |
| JY = KY |
| IF( INCX.EQ.1 )THEN |
| DO 100, J = 1, N |
| TEMP = ZERO |
| K = KUP1 - J |
| DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL ) |
| TEMP = TEMP + A( K + I, J )*X( I ) |
| 90 CONTINUE |
| Y( JY ) = Y( JY ) + ALPHA*TEMP |
| JY = JY + INCY |
| 100 CONTINUE |
| ELSE |
| DO 120, J = 1, N |
| TEMP = ZERO |
| IX = KX |
| K = KUP1 - J |
| DO 110, I = MAX( 1, J - KU ), MIN( M, J + KL ) |
| TEMP = TEMP + A( K + I, J )*X( IX ) |
| IX = IX + INCX |
| 110 CONTINUE |
| Y( JY ) = Y( JY ) + ALPHA*TEMP |
| JY = JY + INCY |
| IF( J.GT.KU ) |
| $ KX = KX + INCX |
| 120 CONTINUE |
| END IF |
| END IF |
| * |
| RETURN |
| * |
| * End of DGBMV . |
| * |
| END |