#include "trop.h"
#include "tfxparam.h"
#include "tofflinegl.h"
// #include "tstroke.h"
// #include "drawutil.h"
#include "tstopwatch.h"
// #include "tpalette.h"
// #include "tvectorrenderdata.h"
#include "tsystem.h"
#include "timagecache.h"
#include "tconvert.h"
#include "trasterimage.h"
#include "timage_io.h"
#include "tcolorfunctions.h"
#include "toonz/tcolumnfx.h"
#include "particlesmanager.h"
#include "particlesengine.h"
#include "trenderer.h"
#include <sstream>
#include <QPointF>
#include <QMatrix4x4>
/*-----------------------------------------------------------------*/
Particles_Engine::Particles_Engine(ParticlesFx *parent, double frame)
: m_parent(parent), m_frame(frame) {}
static void printTime(TStopWatch &sw, std::string name) {
std::stringstream ss;
ss << name << " : ";
sw.print(ss);
ss << '\n' << '\0';
TSystem::outputDebug(ss.str());
}
/*-----------------------------------------------------------------*/
/*
void Particles_Engine::scramble_particles(std::list <Particle*> &myParticles)
{
double size=myParticles.size()
for(i=0; i<myParticles.size();i++)
{
j=(int)((size)*tnz_random_float());
k=(int)((size)*tnz_random_float());
}
}
*/
/*-----------------------------------------------------------------*/
void Particles_Engine::fill_value_struct(struct particles_values &myvalues,
double frame) {
myvalues.source_ctrl_val = m_parent->source_ctrl_val->getValue();
myvalues.bright_thres_val = m_parent->bright_thres_val->getValue();
myvalues.multi_source_val = m_parent->multi_source_val->getValue();
myvalues.x_pos_val = m_parent->center_val->getValue(frame).x;
myvalues.y_pos_val = m_parent->center_val->getValue(frame).y;
// myvalues.unit_val=m_parent->unit_val->getValue(frame);
myvalues.length_val = m_parent->length_val->getValue(frame);
myvalues.height_val = m_parent->height_val->getValue(frame);
myvalues.maxnum_val = m_parent->maxnum_val->getValue(frame);
myvalues.lifetime_val = m_parent->lifetime_val->getValue(frame);
myvalues.lifetime_ctrl_val = m_parent->lifetime_ctrl_val->getValue();
myvalues.column_lifetime_val = m_parent->column_lifetime_val->getValue();
myvalues.startpos_val = m_parent->startpos_val->getValue();
myvalues.randseed_val = m_parent->randseed_val->getValue();
myvalues.gravity_val = m_parent->gravity_val->getValue(frame);
myvalues.g_angle_val = m_parent->g_angle_val->getValue(frame);
myvalues.gravity_ctrl_val = m_parent->gravity_ctrl_val->getValue();
myvalues.friction_val = m_parent->friction_val->getValue(frame);
myvalues.friction_ctrl_val = m_parent->friction_ctrl_val->getValue();
myvalues.windint_val = m_parent->windint_val->getValue(frame);
myvalues.windangle_val = m_parent->windangle_val->getValue(frame);
myvalues.swingmode_val = m_parent->swingmode_val->getValue();
myvalues.randomx_val = m_parent->randomx_val->getValue(frame);
myvalues.randomy_val = m_parent->randomy_val->getValue(frame);
myvalues.randomx_ctrl_val = m_parent->randomx_ctrl_val->getValue();
myvalues.randomy_ctrl_val = m_parent->randomy_ctrl_val->getValue();
myvalues.swing_val = m_parent->swing_val->getValue(frame);
myvalues.speed_val = m_parent->speed_val->getValue(frame);
myvalues.speed_ctrl_val = m_parent->speed_ctrl_val->getValue();
myvalues.speeda_val = m_parent->speeda_val->getValue(frame);
myvalues.speeda_ctrl_val = m_parent->speeda_ctrl_val->getValue();
myvalues.speeda_use_gradient_val =
m_parent->speeda_use_gradient_val->getValue();
myvalues.speedscale_val = m_parent->speedscale_val->getValue();
myvalues.toplayer_val = m_parent->toplayer_val->getValue();
myvalues.mass_val = m_parent->mass_val->getValue(frame);
myvalues.scale_val = m_parent->scale_val->getValue(frame);
myvalues.scale_ctrl_val = m_parent->scale_ctrl_val->getValue();
myvalues.scale_ctrl_all_val = m_parent->scale_ctrl_all_val->getValue();
myvalues.rot_val = m_parent->rot_val->getValue(frame);
myvalues.rot_ctrl_val = m_parent->rot_ctrl_val->getValue();
myvalues.trail_val = m_parent->trail_val->getValue(frame);
myvalues.trailstep_val = m_parent->trailstep_val->getValue(frame);
myvalues.rotswingmode_val = m_parent->rotswingmode_val->getValue();
myvalues.rotspeed_val = m_parent->rotspeed_val->getValue(frame);
myvalues.rotsca_val = m_parent->rotsca_val->getValue(frame);
myvalues.rotswing_val = m_parent->rotswing_val->getValue(frame);
myvalues.pathaim_val = m_parent->pathaim_val->getValue();
myvalues.opacity_val = m_parent->opacity_val->getValue(frame);
myvalues.opacity_ctrl_val = m_parent->opacity_ctrl_val->getValue();
myvalues.trailopacity_val = m_parent->trailopacity_val->getValue(frame);
// myvalues.mblur_val=m_parent->mblur_val->getValue(frame);
myvalues.scalestep_val = m_parent->scalestep_val->getValue(frame);
myvalues.scalestep_ctrl_val = m_parent->scalestep_ctrl_val->getValue();
myvalues.fadein_val = m_parent->fadein_val->getValue(frame);
myvalues.fadeout_val = m_parent->fadeout_val->getValue(frame);
myvalues.animation_val = m_parent->animation_val->getValue();
myvalues.step_val = m_parent->step_val->getValue();
myvalues.gencol_val = m_parent->gencol_val->getValue(frame);
myvalues.gencol_ctrl_val = m_parent->gencol_ctrl_val->getValue();
myvalues.gencol_spread_val = m_parent->gencol_spread_val->getValue(frame);
myvalues.genfadecol_val = m_parent->genfadecol_val->getValue(frame);
myvalues.fincol_val = m_parent->fincol_val->getValue(frame);
myvalues.fincol_ctrl_val = m_parent->fincol_ctrl_val->getValue();
myvalues.fincol_spread_val = m_parent->fincol_spread_val->getValue(frame);
myvalues.finrangecol_val = m_parent->finrangecol_val->getValue(frame);
myvalues.finfadecol_val = m_parent->finfadecol_val->getValue(frame);
myvalues.foutcol_val = m_parent->foutcol_val->getValue(frame);
myvalues.foutcol_ctrl_val = m_parent->foutcol_ctrl_val->getValue();
myvalues.foutcol_spread_val = m_parent->foutcol_spread_val->getValue(frame);
myvalues.foutrangecol_val = m_parent->foutrangecol_val->getValue(frame);
myvalues.foutfadecol_val = m_parent->foutfadecol_val->getValue(frame);
myvalues.source_gradation_val = m_parent->source_gradation_val->getValue();
myvalues.pick_color_for_every_frame_val =
m_parent->pick_color_for_every_frame_val->getValue();
myvalues.perspective_distribution_val =
m_parent->perspective_distribution_val->getValue();
myvalues.motion_blur_val = m_parent->motion_blur_val->getValue();
myvalues.motion_blur_gamma_adjust_val =
m_parent->motion_blur_gamma_adjust_val->getValue(frame);
}
/*-----------------------------------------------------------------*/
void Particles_Engine::fill_range_struct(struct particles_values &values,
struct particles_ranges &ranges) {
ranges.swing_range = values.swing_val.second - values.swing_val.first;
ranges.rotswing_range =
values.rotswing_val.second - values.rotswing_val.first;
ranges.randomx_range = values.randomx_val.second - values.randomx_val.first;
ranges.randomy_range = values.randomy_val.second - values.randomy_val.first;
ranges.rotsca_range = values.rotsca_val.second - values.rotsca_val.first;
ranges.rot_range = values.rot_val.second - values.rot_val.first;
ranges.speed_range = values.speed_val.second - values.speed_val.first;
ranges.speeda_range = values.speeda_val.second - values.speeda_val.first;
ranges.mass_range = values.mass_val.second - values.mass_val.first;
ranges.scale_range = values.scale_val.second - values.scale_val.first;
ranges.lifetime_range =
values.lifetime_val.second - values.lifetime_val.first;
ranges.scalestep_range =
values.scalestep_val.second - values.scalestep_val.first;
ranges.trail_range = (int)(values.trail_val.second - values.trail_val.first);
}
bool Particles_Engine::port_is_used(int i, struct particles_values &values) {
return port_is_used_for_value(i, values) ||
port_is_used_for_gradient(i, values);
}
// Returns true if the pixel value of control image is used.
// Such image will be computed in 8bpc.
bool Particles_Engine::port_is_used_for_value(int i,
struct particles_values &values) {
return values.fincol_ctrl_val == i || values.foutcol_ctrl_val == i ||
values.friction_ctrl_val == i || values.gencol_ctrl_val == i ||
values.opacity_ctrl_val == i || values.rot_ctrl_val == i ||
values.scale_ctrl_val == i || values.scalestep_ctrl_val == i ||
values.source_ctrl_val == i || values.speed_ctrl_val == i ||
(values.speeda_ctrl_val == i && !values.speeda_use_gradient_val) ||
values.lifetime_ctrl_val == i || values.randomx_ctrl_val == i ||
values.randomy_ctrl_val == i;
}
// Returns true if the gradient of control image is used.
// Such image will be computed in 16bpc to get smooth result.
bool Particles_Engine::port_is_used_for_gradient(
int i, struct particles_values &values) {
return values.gravity_ctrl_val == i ||
(values.speeda_ctrl_val == i && values.speeda_use_gradient_val);
}
/*-----------------------------------------------------------------*/
/*-- Startフレームからカレントフレームまで順番に回す関数 --*/
void Particles_Engine::roll_particles(
TTile *tile, std::map<int, TTile *> porttiles, const TRenderSettings &ri,
std::list<Particle> &myParticles, struct particles_values &values, float cx,
float cy, int frame, int curr_frame, int level_n, bool *random_level,
float dpi, std::vector<int> lastframe, int &totalparticles) {
particles_ranges ranges;
int i, newparticles;
float xgravity, ygravity, windx, windy;
/*-- 風の強さ/重力の強さをX,Y成分に分ける --*/
windx = values.windint_val * sin(values.windangle_val);
windy = values.windint_val * cos(values.windangle_val);
xgravity = values.gravity_val * sin(values.g_angle_val);
ygravity = values.gravity_val * cos(values.g_angle_val);
fill_range_struct(values, ranges);
std::vector<std::vector<TPointD>> myregions;
/*-- [1〜255]
* そのIndexに対応するアルファ値を持つピクセルのインデックス値を保存。 [0]
* 使用せず --*/
std::vector<std::vector<int>> myHistogram;
/*--
* アルファ値255から下がっていき、ピクセル数×重み又はアルファ値を次々足した値を格納
* --*/
std::vector<float> myWeight;
std::map<int, TTile *>::iterator it = porttiles.find(values.source_ctrl_val);
/*-- Perspective
* DistributionがONのとき、Sizeに刺さったControlImageが粒子の発生分布を決める
* --*/
std::map<int, TTile *>::iterator sizeIt =
porttiles.find(values.scale_ctrl_val);
if (values.perspective_distribution_val && (sizeIt != porttiles.end())) {
/*-- ソース画像にコントロールが付いていた場合、そのアルファ値をマスクに使う
* --*/
if (values.source_ctrl_val && (it != porttiles.end()))
fill_regions_with_size_map(myregions, myHistogram, sizeIt->second,
it->second, values.bright_thres_val);
else
fill_regions_with_size_map(myregions, myHistogram, sizeIt->second, 0,
values.bright_thres_val);
/*- パーティクルを作る前に myregion内の候補数を合計する--*/
if ((int)myHistogram.size() == 256) {
for (int m = 255; m >= 0; m--) {
/*-- 明度からサイズ サイズから重みを出す --*/
float scale =
values.scale_val.first + ranges.scale_range * (float)m / 255.0f;
float weight = 1.0f / (scale * scale);
float tmpSum = weight * (float)myHistogram[m].size();
int index = 255 - m;
if (index > 0) /*-- これまでの合計に追加する --*/
tmpSum += myWeight[index - 1];
myWeight.push_back(tmpSum);
}
}
} else {
/*- ソース画像にコントロールが付いていた場合 -*/
if (values.source_ctrl_val && (it != porttiles.end()))
/*-- 入力画像のアルファ値に比例して発生濃度を変える --*/
fill_regions(1, myregions, it->second, values.multi_source_val,
values.bright_thres_val, values.source_gradation_val,
myHistogram);
/*- パーティクルを作る前に myregion内の候補数を合計する--*/
/*-- myWeight
* の中には、アルファ255から0まで、各アルファ値×ポイント数を足しこんでいったものが格納される。--*/
if ((int)myHistogram.size() == 256) {
for (int m = 255; m > 0; m--) {
float tmpSum = (float)(m * (int)myHistogram[m].size());
int index = 255 - m;
if (index > 0) tmpSum += myWeight[index - 1];
myWeight.push_back(tmpSum);
}
}
}
/*- birth rate を格納 -*/
newparticles = (int)values.maxnum_val;
if (myParticles.empty() && newparticles) // Initial creation
{
/*- 新たに作るパーティクルの数だけ繰り返す -*/
for (i = 0; i < newparticles; i++) {
int seed = (int)((std::numeric_limits<int>::max)() *
values.random_val->getFloat());
int level = (int)(values.random_val->getFloat() * level_n);
int lifetime = 0;
if (values.column_lifetime_val)
lifetime = lastframe[level];
else
lifetime = (int)(values.lifetime_val.first +
ranges.lifetime_range * values.random_val->getFloat());
if (lifetime > curr_frame - frame)
myParticles.push_back(Particle(
lifetime, seed, porttiles, values, ranges, myregions,
totalparticles, 0, level, lastframe[level], myHistogram, myWeight));
totalparticles++;
}
} else {
std::list<Particle>::iterator it;
for (it = myParticles.begin(); it != myParticles.end();) {
std::list<Particle>::iterator current = it;
++it;
Particle &part = (*current);
if (part.lifetime <= 0) // Note: This is in line with the above
// "lifetime>curr_frame-frame"
myParticles.erase(current); // insertion counterpart
else
part.move(porttiles, values, ranges, windx, windy, xgravity, ygravity,
dpi, lastframe[part.level]);
}
int oldparticles = myParticles.size();
switch (values.toplayer_val) {
case ParticlesFx::TOP_YOUNGER:
for (i = 0; i < newparticles; i++) {
int seed = (int)((std::numeric_limits<int>::max)() *
values.random_val->getFloat());
int level = (int)(values.random_val->getFloat() * level_n);
int lifetime = 0;
if (values.column_lifetime_val)
lifetime = lastframe[level];
else
lifetime =
(int)(values.lifetime_val.first +
ranges.lifetime_range * values.random_val->getFloat());
if (lifetime > curr_frame - frame)
myParticles.push_front(Particle(lifetime, seed, porttiles, values,
ranges, myregions, totalparticles, 0,
level, lastframe[level], myHistogram,
myWeight));
totalparticles++;
}
break;
case ParticlesFx::TOP_RANDOM:
for (i = 0; i < newparticles; i++) {
double tmp = values.random_val->getFloat() * myParticles.size();
std::list<Particle>::iterator it = myParticles.begin();
for (int j = 0; j < tmp; j++, it++)
;
{
int seed = (int)((std::numeric_limits<int>::max)() *
values.random_val->getFloat());
int level = (int)(values.random_val->getFloat() * level_n);
int lifetime = 0;
if (values.column_lifetime_val)
lifetime = lastframe[level];
else
lifetime =
(int)(values.lifetime_val.first +
ranges.lifetime_range * values.random_val->getFloat());
if (lifetime > curr_frame - frame)
myParticles.insert(
it, Particle(lifetime, seed, porttiles, values, ranges,
myregions, totalparticles, 0, level,
lastframe[level], myHistogram, myWeight));
totalparticles++;
}
}
break;
default:
for (i = 0; i < newparticles; i++) {
int seed = (int)((std::numeric_limits<int>::max)() *
values.random_val->getFloat());
int level = (int)(values.random_val->getFloat() * level_n);
int lifetime = 0;
if (values.column_lifetime_val)
lifetime = lastframe[level];
else
lifetime =
(int)(values.lifetime_val.first +
ranges.lifetime_range * values.random_val->getFloat());
if (lifetime > curr_frame - frame)
myParticles.push_back(Particle(lifetime, seed, porttiles, values,
ranges, myregions, totalparticles, 0,
level, lastframe[level], myHistogram,
myWeight));
totalparticles++;
}
break;
}
}
}
/*-----------------------------------------------------------------*/
void Particles_Engine::normalize_values(struct particles_values &values,
const TRenderSettings &ri) {
double dpicorr = 1;
TPointD pos(values.x_pos_val, values.y_pos_val);
(values.x_pos_val) = pos.x;
(values.y_pos_val) = pos.y;
(values.length_val) = (values.length_val) * dpicorr;
(values.height_val) = (values.height_val) * dpicorr;
(values.gravity_val) = (values.gravity_val) * dpicorr * 0.1;
(values.windint_val) = (values.windint_val) * dpicorr;
(values.speed_val.first) = (values.speed_val.first) * dpicorr;
(values.speed_val.second) = (values.speed_val.second) * dpicorr;
(values.randomx_val.first) = (values.randomx_val.first) * dpicorr;
(values.randomx_val.second) = (values.randomx_val.second) * dpicorr;
(values.randomy_val.first) = (values.randomy_val.first) * dpicorr;
(values.randomy_val.second) = (values.randomy_val.second) * dpicorr;
(values.scale_val.first) = (values.scale_val.first) * 0.01;
(values.scale_val.second) = (values.scale_val.second) * 0.01;
(values.scalestep_val.first) = (values.scalestep_val.first) * 0.01;
(values.scalestep_val.second) = (values.scalestep_val.second) * 0.01;
(values.opacity_val.first) = (values.opacity_val.first) * 0.01;
(values.opacity_val.second) = (values.opacity_val.second) * 0.01;
(values.trailopacity_val.first) = (values.trailopacity_val.first) * 0.01;
(values.trailopacity_val.second) = (values.trailopacity_val.second) * 0.01;
(values.friction_val) = -(values.friction_val) * 0.01;
(values.windangle_val) = (values.windangle_val) * M_PI_180;
(values.g_angle_val) = (values.g_angle_val + 180) * M_PI_180;
(values.speeda_val.first) = (values.speeda_val.first) * M_PI_180;
(values.speeda_val.second) = (values.speeda_val.second) * M_PI_180;
if (values.step_val < 1) values.step_val = 1;
values.genfadecol_val = (values.genfadecol_val) * 0.01;
values.finfadecol_val = (values.finfadecol_val) * 0.01;
values.foutfadecol_val = (values.foutfadecol_val) * 0.01;
}
/*-----------------------------------------------------------------*/
void Particles_Engine::render_particles(
TTile *tile, std::vector<TRasterFxPort *> part_ports,
const TRenderSettings &ri, TDimension &p_size, TPointD &p_offset,
std::map<int, TRasterFxPort *> ctrl_ports, std::vector<TLevelP> partLevel,
float dpi, int curr_frame, int shrink, double startx, double starty,
double endx, double endy, std::vector<int> last_frame, unsigned long fxId) {
int frame, startframe, intpart = 0, level_n = 0;
struct particles_values values;
double dpicorr = dpi * 0.01, fractpart = 0, dpicorr_shrinked = 0,
opacity_range = 0;
bool random_level = false;
level_n = part_ports.size();
bool isPrecomputingEnabled = false;
{
TRenderer renderer(TRenderer::instance());
isPrecomputingEnabled =
(renderer && renderer.isPrecomputingEnabled()) ? true : false;
}
memset(&values, 0, sizeof(values));
/*- 現在のフレームでの各種パラメータを得る -*/
fill_value_struct(values, m_frame);
/*- 不透明度の範囲(透明〜不透明を 0〜1 に正規化)-*/
opacity_range = (values.opacity_val.second - values.opacity_val.first) * 0.01;
/*- 開始フレーム -*/
startframe = (int)values.startpos_val;
if (values.unit_val == ParticlesFx::UNIT_SMALL_INCH)
dpicorr_shrinked = dpicorr / shrink;
else
dpicorr_shrinked = dpi / shrink;
std::map<std::pair<int, int>, double> partScales;
curr_frame = curr_frame / values.step_val;
ParticlesManager *pc = ParticlesManager::instance();
// Retrieve the last rolled frame
ParticlesManager::FrameData *particlesData = pc->data(fxId);
std::list<Particle> myParticles;
TRandom myRandom;
values.random_val = &myRandom;
myRandom = m_parent->randseed_val->getValue();
int totalparticles = 0;
int pcFrame = particlesData->m_frame;
if (pcFrame > curr_frame) {
// Clear stored particlesData
particlesData->clear();
pcFrame = particlesData->m_frame;
} else if (pcFrame >= startframe - 1) {
myParticles = particlesData->m_particles;
myRandom = particlesData->m_random;
totalparticles = particlesData->m_totalParticles;
}
/*- スタートからカレントフレームまでループ -*/
for (frame = startframe - 1; frame <= curr_frame; ++frame) {
int dist_frame = curr_frame - frame;
/*-
* ループ内の現在のフレームでのパラメータを取得。スタートが負ならフレーム=0のときの値を格納
* -*/
fill_value_struct(values, frame < 0 ? 0 : frame * values.step_val);
/*- パラメータの正規化 -*/
normalize_values(values, ri);
/*- maxnum_valは"birth_rate"のパラメータ -*/
intpart = (int)values.maxnum_val;
/*-
* /birth_rateが小数だったとき、各フレームの小数部分を足しこんだ結果の整数部分をintpartに渡す。
* -*/
fractpart = fractpart + values.maxnum_val - intpart;
if ((int)fractpart) {
values.maxnum_val += (int)fractpart;
fractpart = fractpart - (int)fractpart;
}
std::map<int, TTile *> porttiles;
// Perform the roll
/*- RenderSettingsを複製して現在のフレームの計算用にする -*/
TRenderSettings riAux(ri);
riAux.m_affine = TAffine();
riAux.m_bpp = 32;
riAux.m_linearColorSpace = false;
// control image using its gradient is computed in 64bpp
TRenderSettings riAux64(riAux);
riAux64.m_bpp = 64;
int r_frame; // Useful in case of negative roll frames
if (frame < 0)
r_frame = 0;
else
r_frame = frame;
/*- 出力画像のバウンディングボックス -*/
TRectD outTileBBox(tile->m_pos, TDimensionD(tile->getRaster()->getLx(),
tile->getRaster()->getLy()));
// enlarge bounding box for control images with infinite bbox in case the
// source region is larger than output tile
TRectD bboxForInifiniteSource = ri.m_affine.inv() * outTileBBox;
TRectD sourceBbox;
if (values.source_ctrl_val &&
ctrl_ports.at(values.source_ctrl_val)->isConnected()) {
(*(ctrl_ports.at(values.source_ctrl_val)))
->getBBox(r_frame, sourceBbox, riAux);
}
if (sourceBbox.isEmpty() || sourceBbox == TConsts::infiniteRectD) {
sourceBbox = TRectD(values.x_pos_val - values.length_val * 0.5,
values.y_pos_val - values.height_val * 0.5,
values.x_pos_val + values.length_val * 0.5,
values.y_pos_val + values.height_val * 0.5);
}
bboxForInifiniteSource += sourceBbox;
/*- Controlに刺さっている各ポートについて -*/
for (std::map<int, TRasterFxPort *>::iterator it = ctrl_ports.begin();
it != ctrl_ports.end(); ++it) {
TTile *tmp;
/*- ポートが接続されていて、Fx内で実際に使用されていたら -*/
if ((it->second)->isConnected() && port_is_used(it->first, values)) {
TRectD bbox;
(*(it->second))->getBBox(r_frame, bbox, riAux);
/*- 素材が存在する場合、portTilesにコントロール画像タイルを格納 -*/
if (!bbox.isEmpty()) {
if (bbox == TConsts::infiniteRectD) // There could be an infinite
// bbox - deal with it
bbox = bboxForInifiniteSource;
if (frame <= pcFrame) {
// This frame will not actually be rolled. However, it was
// dryComputed - so, declare the same here.
(*it->second)->dryCompute(bbox, r_frame, riAux);
} else {
// control image is used its gradient
if (port_is_used_for_gradient(it->first, values)) {
tmp = new TTile;
if (isPrecomputingEnabled)
(*it->second)
->allocateAndCompute(*tmp, bbox.getP00(),
convert(bbox).getSize(), 0, r_frame,
riAux64);
else {
std::string alias =
"CTRL64: " + (*(it->second))->getAlias(r_frame, riAux64);
TRasterImageP rimg = TImageCache::instance()->get(alias, false);
if (rimg) {
tmp->m_pos = bbox.getP00();
tmp->setRaster(rimg->getRaster());
} else {
(*it->second)
->allocateAndCompute(*tmp, bbox.getP00(),
convert(bbox).getSize(), 0, r_frame,
riAux64);
addRenderCache(alias, TRasterImageP(tmp->getRaster()));
}
}
porttiles[it->first + Ctrl_64_Offset] = tmp;
// in case the control image is also used for non-gradient
if (port_is_used_for_value(it->first, values)) {
TRaster32P tileRas(tmp->getRaster()->getSize());
TRop::convert(tileRas, tmp->getRaster());
tmp = new TTile;
tmp->m_pos = bbox.getP00();
tmp->setRaster(tileRas);
porttiles[it->first] = tmp;
}
}
// control images used only for non-gradient
else {
tmp = new TTile;
if (isPrecomputingEnabled)
(*it->second)
->allocateAndCompute(*tmp, bbox.getP00(),
convert(bbox).getSize(), 0, r_frame,
riAux);
else {
std::string alias =
"CTRL: " + (*(it->second))->getAlias(r_frame, riAux);
TRasterImageP rimg = TImageCache::instance()->get(alias, false);
if (rimg) {
tmp->m_pos = bbox.getP00();
tmp->setRaster(rimg->getRaster());
} else {
(*it->second)
->allocateAndCompute(*tmp, bbox.getP00(),
convert(bbox).getSize(), 0, r_frame,
riAux);
addRenderCache(alias, TRasterImageP(tmp->getRaster()));
}
}
porttiles[it->first] = tmp;
}
}
}
}
}
if (frame > pcFrame) {
// Invoke the actual rolling procedure
roll_particles(tile, porttiles, riAux, myParticles, values, 0, 0, frame,
curr_frame, level_n, &random_level, 1, last_frame,
totalparticles);
// Store the rolled data in the particles manager
if (!particlesData->m_calculated ||
particlesData->m_frame + particlesData->m_maxTrail < frame) {
particlesData->m_frame = frame;
particlesData->m_particles = myParticles;
particlesData->m_random = myRandom;
particlesData->buildMaxTrail();
particlesData->m_calculated = true;
particlesData->m_totalParticles = totalparticles;
}
}
// Render the particles if the distance from current frame is a trail
// multiple
if (frame >= startframe - 1 &&
!(dist_frame %
(values.trailstep_val > 1.0 ? (int)values.trailstep_val : 1))) {
// Store the maximum particle size before the do_render cycle
std::list<Particle>::iterator pt;
for (pt = myParticles.begin(); pt != myParticles.end(); ++pt) {
Particle &part = *pt;
int ndx = part.frame % last_frame[part.level];
std::pair<int, int> ndxPair(part.level, ndx);
std::map<std::pair<int, int>, double>::iterator it =
partScales.find(ndxPair);
if (it != partScales.end())
it->second = std::max(part.scale, it->second);
else
partScales[ndxPair] = part.scale;
}
if (values.toplayer_val == ParticlesFx::TOP_SMALLER ||
values.toplayer_val == ParticlesFx::TOP_BIGGER)
myParticles.sort(ComparebySize());
if (values.toplayer_val == ParticlesFx::TOP_SMALLER) {
std::list<Particle>::iterator pt;
for (pt = myParticles.begin(); pt != myParticles.end(); ++pt) {
Particle &part = *pt;
if (dist_frame <= part.trail && part.scale && part.lifetime > 0 &&
part.lifetime <=
part.genlifetime) // This last... shouldn't always be?
{
do_render(&part, tile, part_ports, porttiles, ri, p_size, p_offset,
last_frame[part.level], partLevel, values, opacity_range,
dist_frame, partScales);
}
}
} else {
std::list<Particle>::reverse_iterator pt;
for (pt = myParticles.rbegin(); pt != myParticles.rend(); ++pt) {
Particle &part = *pt;
if (dist_frame <= part.trail && part.scale && part.lifetime > 0 &&
part.lifetime <= part.genlifetime) // Same here..?
{
do_render(&part, tile, part_ports, porttiles, ri, p_size, p_offset,
last_frame[part.level], partLevel, values, opacity_range,
dist_frame, partScales);
}
}
}
}
std::map<int, TTile *>::iterator it;
for (it = porttiles.begin(); it != porttiles.end(); ++it) delete it->second;
}
}
//-----------------------------------------------------------------
/*- render_particles から呼ばれる。粒子の数だけ繰り返し -*/
void Particles_Engine::do_render(
Particle *part, TTile *tile, std::vector<TRasterFxPort *> part_ports,
std::map<int, TTile *> porttiles, const TRenderSettings &ri,
TDimension &p_size, TPointD &p_offset, int lastframe,
std::vector<TLevelP> partLevel, struct particles_values &values,
double opacity_range, int dist_frame,
std::map<std::pair<int, int>, double> &partScales) {
// Retrieve the particle frame - that is, the *column frame* from which we are
// picking
// the particle to be rendered.
int ndx = part->frame % lastframe;
TRasterP tileRas(tile->getRaster());
std::string levelid;
double aim_angle = 0;
if (values.pathaim_val) {
double arctan = atan2(part->vy, part->vx);
aim_angle = arctan * M_180_PI;
}
// Calculate the rotational and scale components we have to apply on the
// particle
TRotation rotM(part->angle + aim_angle);
TScale scaleM(part->scale);
TAffine M(rotM * scaleM);
// Particles deal with dpi affines on their own
TAffine scaleAff(m_parent->handledAffine(ri, m_frame));
double partScale =
scaleAff.a11 * partScales[std::pair<int, int>(part->level, ndx)];
TDimensionD partResolution(0, 0);
TRenderSettings riNew(ri);
// Retrieve the bounding box in the standard reference
TRectD bbox(-5.0, -5.0, 5.0, 5.0), standardRefBBox;
if (part->level <
(int)part_ports.size() && // Not the default levelless cases
part_ports[part->level]->isConnected()) {
TRenderSettings riIdentity(ri);
riIdentity.m_affine = TAffine();
(*part_ports[part->level])->getBBox(ndx, bbox, riIdentity);
// Now sources with infinite bounding box are retrieved with the output tile
// size. This is especially for levels deformed by plastic mesh which must
// have some finite bbox but return infinite bbox because "it's hard work to
// calculate". (see PlasticDeformerFx::doGetBBox() and the issue
// opentoonz#1330) NOTE: No fx returns half-planes or similar (ie if any
// coordinate is either (std::numeric_limits<double>::max)() or its
// opposite, then the rect IS THE infiniteRectD)
if (bbox.isEmpty())
return;
else if (bbox == TConsts::infiniteRectD)
bbox *= TRectD(tile->m_pos, TDimensionD(tile->getRaster()->getLx(),
tile->getRaster()->getLy()));
}
// Now, these are the particle rendering specifications
bbox = bbox.enlarge(3);
standardRefBBox = bbox;
riNew.m_affine = TScale(partScale);
bbox = riNew.m_affine * bbox;
riNew.m_linearColorSpace = false;
/*- 縮小済みのParticleのサイズ -*/
partResolution = TDimensionD(tceil(bbox.getLx()), tceil(bbox.getLy()));
TRasterP ras;
std::string alias;
TRasterImageP rimg;
rimg = partLevel[part->level]->frame(ndx);
if (rimg) {
ras = rimg->getRaster();
} else {
alias = "PART: " + (*part_ports[part->level])->getAlias(ndx, riNew);
rimg = TImageCache::instance()->get(alias, false);
if (rimg) {
ras = rimg->getRaster();
// Check that the raster resolution is sufficient for our purposes
if (ras->getLx() < partResolution.lx || ras->getLy() < partResolution.ly)
ras = 0;
else
partResolution = TDimensionD(ras->getLx(), ras->getLy());
}
}
// We are interested in making the relation between scale and (integer)
// resolution
// bijective - since we shall cache by using resolution as a partial
// identification parameter.
// Therefore, we find the current bbox Lx and take a unique scale out of it.
partScale = partResolution.lx / standardRefBBox.getLx();
riNew.m_affine = TScale(partScale);
bbox = riNew.m_affine * standardRefBBox;
// If no image was retrieved from the cache (or it was not scaled enough),
// calculate it
if (!ras) {
TTile auxTile;
(*part_ports[part->level])
->allocateAndCompute(auxTile, bbox.getP00(),
TDimension(partResolution.lx, partResolution.ly),
tile->getRaster(), ndx, riNew);
ras = auxTile.getRaster();
// For now, we'll just use 32 bit particles
TRaster32P rcachepart;
rcachepart = ras;
if (!rcachepart) {
rcachepart = TRaster32P(ras->getSize());
TRop::convert(rcachepart, ras);
}
ras = rcachepart;
// Finally, cache the particle
addRenderCache(alias, TRasterImageP(ras));
}
if (!ras) return; // At this point, it should never happen anyway...
// Deal with particle colors/opacity
TRaster32P rfinalpart;
double curr_opacity =
part->set_Opacity(porttiles, values, opacity_range, dist_frame);
if (curr_opacity != 1.0 || part->gencol.fadecol || part->fincol.fadecol ||
part->foutcol.fadecol) {
/*- 毎フレーム現在位置のピクセル色を参照 -*/
if (values.pick_color_for_every_frame_val && values.gencol_ctrl_val &&
(porttiles.find(values.gencol_ctrl_val) != porttiles.end()))
part->get_image_reference(porttiles[values.gencol_ctrl_val], values,
part->gencol.col);
rfinalpart = ras->clone();
part->modify_colors_and_opacity(values, curr_opacity, dist_frame,
rfinalpart);
} else
rfinalpart = ras;
// Now, let's build the particle transform before it is overed on the output
// tile
// First, complete the transform by adding the rotational and scale
// components from
// Particles parameters
M = ri.m_affine * M * TScale(1.0 / partScale);
// render with motion blur
if (values.motion_blur_val) {
if (do_render_motion_blur(part, tile, tileRas, rfinalpart, M, bbox,
values.trailopacity_val,
values.motion_blur_gamma_adjust_val, ri))
return;
}
// Then, retrieve the particle position in current reference.
TPointD pos(part->x, part->y);
pos = ri.m_affine * pos;
// Finally, add the translational component to the particle
// NOTE: p_offset is added to account for the particle relative position
// inside its level's bbox
M = TTranslation(pos - tile->m_pos) * M * TTranslation(bbox.getP00());
if (TRaster32P myras32 = tile->getRaster())
TRop::over(tileRas, rfinalpart, M);
else if (TRaster64P myras64 = tile->getRaster())
TRop::over(tileRas, rfinalpart, M);
else
throw TException("ParticlesFx: unsupported Pixel Type");
}
/*-----------------------------------------------------------------*/
bool Particles_Engine::do_render_motion_blur(
Particle *part, TTile *tile, TRasterP tileRas, TRaster32P rfinalpart,
TAffine &M, const TRectD &bbox, const DoublePair &trailOpacity,
const double gamma_adjust, const TRenderSettings &ri) {
QList<TPointD> points;
QList<double> lengths;
// do not render new-born particles as it has no trace
if (part->genlifetime - part->lifetime == 0) return true;
double gamma = gamma_adjust + ri.m_colorSpaceGamma;
TRectD partBBoxD =
M * TTranslation(bbox.getP00()) * convert(rfinalpart->getBounds());
partBBoxD = partBBoxD.enlarge(1.0);
TRect partBBox = convert(partBBoxD);
TRaster32P partRas(partBBox.getSize());
TRop::over(
partRas, rfinalpart,
TTranslation(-partBBoxD.getP00()) * M * TTranslation(bbox.getP00()));
// create trace vertices list
// render straight trace in the first 4 frames
if (part->genlifetime - part->lifetime < 3) {
TPointD p0(part->x, part->y);
TPointD p1(part->oldx[0], part->oldy[0]);
p0 = ri.m_affine * p0;
p1 = ri.m_affine * p1;
points.append(TPointD(0, 0));
points.append(p1 - p0);
}
// Cubic spline interpolation
else {
// divide into 8 lines (= 9 segments)
int pointAmount = 9;
TPointD keyP[4] = {TPointD(part->x, part->y),
TPointD(part->oldx[0], part->oldy[0]),
TPointD(part->oldx[1], part->oldy[1]),
TPointD(part->oldx[2], part->oldy[2])};
for (int i = 0; i < 4; i++) {
keyP[i] = ri.m_affine * keyP[i];
if (i > 0) {
keyP[i] -= keyP[0];
}
}
keyP[0] = TPointD(0, 0);
double u[4];
u[0] = 0.;
u[1] = u[0] + norm(keyP[1] - keyP[0]);
u[2] = u[1] + norm(keyP[2] - keyP[1]);
u[3] = u[2] + norm(keyP[3] - keyP[2]);
QMatrix4x4 mat(u[0] * u[0] * u[0], u[0] * u[0], u[0], 1.,
u[1] * u[1] * u[1], u[1] * u[1], u[1], 1.,
u[2] * u[2] * u[2], u[2] * u[2], u[2], 1.,
u[3] * u[3] * u[3], u[3] * u[3], u[3], 1.);
bool ok;
mat = mat.inverted(&ok);
if (!ok) return false;
QPointF coeff[4];
for (int i = 0; i < 4; i++) {
coeff[i] = mat(i, 0) * QPointF(keyP[0].x, keyP[0].y) +
mat(i, 1) * QPointF(keyP[1].x, keyP[1].y) +
mat(i, 2) * QPointF(keyP[2].x, keyP[2].y) +
mat(i, 3) * QPointF(keyP[3].x, keyP[3].y);
}
for (int p = 0; p <= pointAmount; p++) {
double ratio = (double)p / (double)pointAmount;
double cur_u = u[0] * ratio + u[1] * (1 - ratio);
points.append(TPointD(
cur_u * cur_u * cur_u * coeff[0].x() + cur_u * cur_u * coeff[1].x() +
cur_u * coeff[2].x() + coeff[3].x(),
cur_u * cur_u * cur_u * coeff[0].y() + cur_u * cur_u * coeff[1].y() +
cur_u * coeff[2].y() + coeff[3].y()));
}
}
// compute lengths
for (int p = 0; p < points.size() - 1; p++) {
TPointD vec = points[p + 1] - points[p];
lengths.append(norm(vec));
}
/* Get upper, lower, left and right margin */
double minX = 0.0;
double maxX = 0.0;
double minY = 0.0;
double maxY = 0.0;
for (int p = 0; p < points.size(); p++) {
if (points.at(p).x > maxX) maxX = points.at(p).x;
if (points.at(p).x < minX) minX = points.at(p).x;
if (points.at(p).y > maxY) maxY = points.at(p).y;
if (points.at(p).y < minY) minY = points.at(p).y;
}
int marginLeft = (int)std::ceil(std::abs(minX));
int marginRight = (int)std::ceil(std::abs(maxX));
int marginTop = (int)std::ceil(std::abs(maxY));
int marginBottom = (int)std::ceil(std::abs(minY));
if (marginLeft == 0 && marginRight == 0 && marginTop == 0 &&
marginBottom == 0)
return false;
// end opacity is computed so that the trace will be connected smoothly in the
// trail
float end_opacity =
trailOpacity.second +
(trailOpacity.first - trailOpacity.second) / std::max(1, part->trail);
// create the blur filter
TDimensionI filterDim(marginLeft + marginRight + 1,
marginTop + marginBottom + 1);
TRasterGR8P filter_ras(sizeof(float) * filterDim.lx, filterDim.ly);
filter_ras->lock();
float *filter_p = (float *)filter_ras->getRawData();
/* Variable for adding filter value*/
float fil_val_sum = 0.0f;
/* The current filter position to be looped in the 'for' statement */
float *current_fil_p = filter_p;
/* For each coordinate in the filter */
for (int fily = 0; fily < filterDim.ly; fily++) {
for (int filx = 0; filx < filterDim.lx; filx++, current_fil_p++) {
/* Get filter coordinates */
TPointD pos(static_cast<float>(filx - marginLeft),
static_cast<float>(fily - marginBottom));
/* Value to be updated */
float nearestDist2 = 100.0f;
int nearestIndex = -1;
float nearestFramePosRatio = 0.0f;
/* Find the nearest point for each pair of sample points */
for (int v = 0; v < points.count() - 1; v++) {
TPointD p0 = points[v];
TPointD p1 = points[v + 1];
/* If it is not within the range, continue */
if (pos.x < std::min(p0.x, p1.x) - 1.0f ||
pos.x > std::max(p0.x, p1.x) + 1.0f ||
pos.y < std::min(p0.y, p1.y) - 1.0f ||
pos.y > std::max(p0.y, p1.y) + 1.0f)
continue;
/* Since it is within the range, obtain the distance between the line
* segment and the point. */
/* Calculate the inner product of 'p0'->sampling point and 'p0'->'p1' */
TPointD vec_p0_sample(static_cast<float>(pos.x - p0.x),
static_cast<float>(pos.y - p0.y));
TPointD vec_p0_p1(static_cast<float>(p1.x - p0.x),
static_cast<float>(p1.y - p0.y));
float dot =
vec_p0_sample.x * vec_p0_p1.x + vec_p0_sample.y * vec_p0_p1.y;
/* Calculate the square of distance */
float dist2;
float framePosRatio;
/* If it is before 'p0' */
if (dot <= 0.0f) {
dist2 = vec_p0_sample.x * vec_p0_sample.x +
vec_p0_sample.y * vec_p0_sample.y;
framePosRatio = 0.0f;
} else {
/* Calculate the square of the length of the trajectory vector */
float length2 = lengths[v] * lengths[v];
/* If it is between 'p0' and 'p1'
* If the trajectory at p is a point,
* 'length2' becomes 0, so it will never fall into this condition.
* So, there should not be worry of becoming ZeroDivide. */
if (dot < length2) {
float p0_sample_dist2 = vec_p0_sample.x * vec_p0_sample.x +
vec_p0_sample.y * vec_p0_sample.y;
dist2 = p0_sample_dist2 - dot * dot / length2;
framePosRatio = dot / length2;
}
/* If it is before 'p1' */
else {
TPointD vec_p1_sample = pos - p1;
dist2 = vec_p1_sample.x * vec_p1_sample.x +
vec_p1_sample.y * vec_p1_sample.y;
framePosRatio = 1.0f;
}
}
/* If the distance is farther than (√ 2 + 1) / 2, continue
* Because it is a comparison with dist2, the value is squared */
if (dist2 > 1.4571f) continue;
/* Update if distance is closer */
if (dist2 < nearestDist2) {
nearestDist2 = dist2;
nearestIndex = v;
nearestFramePosRatio = framePosRatio;
}
}
/* If neighborhood vector of the current pixel can not be found,
* set the filter value to 0 and return */
if (nearestIndex == -1) {
*current_fil_p = 0.0f;
continue;
}
/* Count how many subpixels (16 * 16) of the current pixel
* are in the range 0.5 from the neighborhood vector.
*/
int count = 0;
TPointD np0 = points[nearestIndex];
TPointD np1 = points[nearestIndex + 1];
for (int yy = 0; yy < 16; yy++) {
/* Y coordinate of the subpixel */
float subPosY = pos.y + ((float)yy - 7.5f) / 16.0f;
for (int xx = 0; xx < 16; xx++) {
/* X coordinate of the subpixel */
float subPosX = pos.x + ((float)xx - 7.5f) / 16.0f;
TPointD vec_np0_sub = TPointD(subPosX, subPosY) - np0;
TPointD vec_np0_np1 = np1 - np0;
float dot =
vec_np0_sub.x * vec_np0_np1.x + vec_np0_sub.y * vec_np0_np1.y;
/* Calculate the square of the distance */
float dist2;
/* If it is before 'p0' */
if (dot <= 0.0f)
dist2 =
vec_np0_sub.x * vec_np0_sub.x + vec_np0_sub.y * vec_np0_sub.y;
else {
/* Compute the square of the length of the trajectory vector */
float length2 = lengths[nearestIndex] * lengths[nearestIndex];
/* If it is between 'p0' and 'p1' */
if (dot < length2) {
float np0_sub_dist2 =
vec_np0_sub.x * vec_np0_sub.x + vec_np0_sub.y * vec_np0_sub.y;
dist2 = np0_sub_dist2 - dot * dot / length2;
}
/* if it is before 'p1' */
else {
TPointD vec_np1_sub = TPointD(subPosX, subPosY) - np1;
dist2 =
vec_np1_sub.x * vec_np1_sub.x + vec_np1_sub.y * vec_np1_sub.y;
}
}
/* Increment count if squared distance is less than 0.25 */
if (dist2 <= 0.25f) count++;
}
}
/* 'safeguard' - If the count is 0, set the field value to 0 and return.
*/
if (count == 0) {
*current_fil_p = 0.0f;
continue;
}
/* Count is 256 at a maximum */
float countRatio = (float)count / 256.0f;
/* The brightness of the filter value is inversely proportional
* to the area of the line of width 1 made by the vector.
*
* Since there are semicircular caps with radius 0.5
* before and after the vector, it will never be 0-divide
* even if the length of vector is 0.
*/
/* Area of the neighborhood vector when width = 1 */
float vecMenseki = 0.25f * 3.14159265f + lengths[nearestIndex];
float opacity = 1.0f;
if (end_opacity < 1.0f) {
float ratio = ((float)nearestIndex + nearestFramePosRatio) /
(float)(points.size() - 1);
opacity = ratio + end_opacity * (1.f - ratio);
}
/* Store field value */
*current_fil_p = opacity * countRatio / vecMenseki;
fil_val_sum += *current_fil_p;
}
}
/* Normalization */
current_fil_p = filter_p;
for (int f = 0; f < filterDim.lx * filterDim.ly; f++, current_fil_p++) {
*current_fil_p /= fil_val_sum;
}
// apply the filter
TDimension blurredSize =
partRas->getSize() +
TDimension(marginLeft + marginRight, marginTop + marginBottom);
float4 *blurred_p;
TRasterGR8P blurred_ras(sizeof(float4) * blurredSize.lx, blurredSize.ly);
blurred_ras->lock();
blurred_ras->clear();
blurred_p = (float4 *)blurred_ras->getRawData();
// for each texture pixels,
// distribute to all pixels in the filter
for (int ty = 0; ty < partRas->getLy(); ty++) {
TPixel32 *t_p = partRas->pixels(ty);
for (int tx = 0; tx < partRas->getLx(); tx++, t_p++) {
if (t_p->m == 0) continue;
float4 tex = {(float)t_p->r / (float)(TPixel32::maxChannelValue),
(float)t_p->g / (float)(TPixel32::maxChannelValue),
(float)t_p->b / (float)(TPixel32::maxChannelValue),
(float)t_p->m / (float)(TPixel32::maxChannelValue)};
if (gamma > 1.f) {
tex.x = std::pow(tex.x / tex.w, gamma) * tex.w;
tex.y = std::pow(tex.y / tex.w, gamma) * tex.w;
tex.z = std::pow(tex.z / tex.w, gamma) * tex.w;
}
current_fil_p = filter_p;
for (int outy = ty; outy < ty + filterDim.ly; outy++) {
for (int outx = tx; outx < tx + filterDim.lx; outx++, current_fil_p++) {
if (*current_fil_p == 0.f) continue;
int outIndex = outy * blurredSize.lx + outx;
blurred_p[outIndex].x += *current_fil_p * tex.x;
blurred_p[outIndex].y += *current_fil_p * tex.y;
blurred_p[outIndex].z += *current_fil_p * tex.z;
blurred_p[outIndex].w += *current_fil_p * tex.w;
}
}
}
}
filter_ras->unlock();
float4 *b_p = blurred_p;
TRaster32P blurred(blurredSize);
for (int by = 0; by < blurredSize.ly; by++) {
TPixel32 *b_ras_p = blurred->pixels(by);
for (int bx = 0; bx < blurredSize.lx; bx++, b_ras_p++, b_p++) {
if (gamma > 1.f && (*b_p).w > 0.f) {
(*b_p).x = std::pow((*b_p).x / (*b_p).w, 1.f / gamma) * (*b_p).w;
(*b_p).y = std::pow((*b_p).y / (*b_p).w, 1.f / gamma) * (*b_p).w;
(*b_p).z = std::pow((*b_p).z / (*b_p).w, 1.f / gamma) * (*b_p).w;
}
b_ras_p->r = (TPixel32::Channel)std::round(
(*b_p).x * (float)(TPixel32::maxChannelValue));
b_ras_p->g = (TPixel32::Channel)std::round(
(*b_p).y * (float)(TPixel32::maxChannelValue));
b_ras_p->b = (TPixel32::Channel)std::round(
(*b_p).z * (float)(TPixel32::maxChannelValue));
b_ras_p->m = (TPixel32::Channel)std::round(
(*b_p).w * (float)(TPixel32::maxChannelValue));
}
}
blurred_ras->unlock();
// composite particle
TPointD pos(part->x, part->y);
pos = ri.m_affine * pos;
M = TTranslation(pos - tile->m_pos) *
TTranslation(-TPointD(marginLeft, marginBottom) + partBBoxD.getP00());
if (TRaster32P myras32 = tileRas)
TRop::over(tileRas, blurred, M);
else if (TRaster64P myras64 = tileRas)
TRop::over(tileRas, blurred, M);
else
throw TException("ParticlesFx: unsupported Pixel Type");
return true;
}
/*-----------------------------------------------------------------*/
void Particles_Engine::fill_array(TTile *ctrl1, int ®ioncount,
std::vector<int> &myarray,
std::vector<int> &lista,
std::vector<int> &listb, int threshold) {
int pr = 0;
int i, j;
int lx, ly;
lx = ctrl1->getRaster()->getLx();
ly = ctrl1->getRaster()->getLy();
/*prima riga*/
TRaster32P raster32 = ctrl1->getRaster();
raster32->lock();
TPixel32 *pix = raster32->pixels(0);
for (i = 0; i < lx; i++) {
if (pix->m > threshold) {
pr++;
if (!i) {
(regioncount)++;
myarray[i] = (regioncount);
} else {
if (myarray[i - 1]) myarray[i] = myarray[i - 1];
}
}
pix++;
}
for (j = 1; j < ly; j++) {
for (i = 0, pix = raster32->pixels(j); i < lx; i++, pix++) {
/*TMSG_INFO("j=%d i=%d\n", j, i);*/
if (pix->m > threshold) {
std::vector<int> mask(4);
pr++;
/* l,ul,u,ur;*/
if (i) {
mask[0] = myarray[i - 1 + lx * j];
mask[1] = myarray[i - 1 + lx * (j - 1)];
}
if (i != lx - 1) mask[3] = myarray[i + 1 + lx * (j - 1)];
mask[2] = myarray[i + lx * (j - 1)];
if (!mask[0] && !mask[1] && !mask[2] && !mask[3]) {
(regioncount)++;
myarray[i + lx * j] = (regioncount);
} else {
int mc, firsttime = 1;
for (mc = 0; mc < 4; mc++) {
if (mask[mc]) {
if (firsttime) {
myarray[i + lx * j] = mask[mc];
firsttime = 0;
} else {
if (myarray[i + lx * j] != mask[mc]) {
lista.push_back(myarray[i + lx * j]);
listb.push_back(mask[mc]);
/*TMSG_INFO("j=%d i=%d mc=%d, mask=%d\n", j, i, mc,
* mask[mc]);*/
}
}
}
}
}
}
}
}
raster32->unlock();
}
/*-----------------------------------------------------------------*/
void Particles_Engine::normalize_array(
std::vector<std::vector<TPointD>> &myregions, TPointD pos, int lx, int ly,
int regioncounter, std::vector<int> &myarray, std::vector<int> &lista,
std::vector<int> &listb, std::vector<int> &final) {
int i, j, k, l;
std::vector<int> tmp;
int maxregioncounter = 0;
int listsize = (int)lista.size();
// TMSG_INFO("regioncounter %d, eqcount=%d\n", regioncounter, eqcount);
for (k = 1; k <= regioncounter; k++) final[k] = k;
for (l = 0; l < listsize; l++) {
j = lista[l];
/*TMSG_INFO("j vale %d\n", j);*/
while (final[j] != j) j = final[j];
k = listb[l];
/*TMSG_INFO("k vale %d\n", k);*/
while (final[k] != k) k = final[k];
if (j != k) final[j] = k;
}
// TMSG_INFO("esco dal for\n");
for (j = 1; j <= regioncounter; j++)
while (final[j] != final[final[j]]) final[j] = final[final[j]];
/*conto quante cavolo di regioni sono*/
tmp.push_back(final[1]);
maxregioncounter = 1;
for (i = 2; i <= regioncounter; i++) {
int diff = 1;
for (j = 0; j < maxregioncounter; j++) {
if (tmp[j] == final[i]) {
diff = 0;
break;
}
}
if (diff) {
tmp.push_back(final[i]);
maxregioncounter++;
}
}
myregions.resize(maxregioncounter);
for (j = 0; j < ly; j++) {
for (i = 0; i < lx; i++) {
int tmpindex;
if (myarray[i + lx * j]) {
tmpindex = final[myarray[i + lx * j]];
/*TMSG_INFO("tmpindex=%d\n", tmpindex);*/
for (k = 0; k < maxregioncounter; k++) {
if (tmp[k] == tmpindex) break;
}
/*TMSG_INFO("k=%d\n", k);*/
TPointD tmppoint;
tmppoint.x = i;
tmppoint.y = j;
tmppoint += pos;
myregions[k].push_back(tmppoint);
}
}
}
}
/*-----------------------------------------------------------------*/
/*- multiがONのときのSource画像(ctrl1)の領域を分析 -*/
void Particles_Engine::fill_subregions(
int cont_index, std::vector<std::vector<TPointD>> &myregions, TTile *ctrl1,
int thres) {
int regioncounter = 0;
int lx = ctrl1->getRaster()->getLx();
int ly = ctrl1->getRaster()->getLy();
std::vector<int> myarray(lx * ly);
std::vector<int> lista;
std::vector<int> listb;
fill_array(ctrl1, regioncounter, myarray, lista, listb, thres);
if (regioncounter) {
std::vector<int> final(regioncounter + 1);
normalize_array(myregions, ctrl1->m_pos, lx, ly, regioncounter, myarray,
lista, listb, final);
}
}
/*-----------------------------------------------------------------*/
/*- 入力画像のアルファ値に比例して発生濃度を変える。各Pointにウェイトを持たせる
* -*/
void Particles_Engine::fill_single_region(
std::vector<std::vector<TPointD>> &myregions, TTile *ctrl1, int threshold,
bool do_source_gradation, std::vector<std::vector<int>> &myHistogram) {
TRaster32P raster32 = ctrl1->getRaster();
assert(raster32); // per ora gestisco solo i Raster32
// int lx=raster32->getLx();
// int ly=raster32->getLy();
int j;
myregions.resize(1);
myregions[0].clear();
int cc = 0;
int icc = 0;
raster32->lock();
if (!do_source_gradation) /*- 2階調の場合 -*/
{
for (j = 0; j < raster32->getLy(); j++) {
TPixel32 *pix = raster32->pixels(j);
TPixel32 *endPix = pix + raster32->getLx();
int i = 0;
while (pix < endPix) {
cc++;
if (pix->m > threshold) {
icc++;
TPointD tmp;
tmp.y = j;
tmp.x = i;
tmp += ctrl1->m_pos;
myregions[0].push_back(tmp);
/*TMSG_INFO("total=%d\n", Region[0].total);*/
} else {
// int a=0;
}
i++;
pix++;
}
}
} else {
for (int i = 0; i < 256; i++) myHistogram.push_back(std::vector<int>());
TRandom rand = TRandom(1);
for (j = 0; j < raster32->getLy(); j++) {
TPixel32 *pix = raster32->pixels(j);
TPixel32 *endPix = pix + raster32->getLx();
int i = 0;
while (pix < endPix) {
cc++;
/*-- アルファの濃度に比例してパーティクルを発生させるための、
シンプルな方法。そのピクセルのアルファ値の数だけ「立候補」させる。
--*/
if (pix->m > 0) {
icc++;
TPointD tmp;
tmp.y = j;
tmp.x = i;
tmp += ctrl1->m_pos;
/*- Histogramの登録 -*/
myHistogram[(int)pix->m].push_back((int)myregions[0].size());
/*- 各Pointにウェイトを持たせる -*/
myregions[0].push_back(tmp);
} else {
}
i++;
pix++;
}
}
}
if (myregions[0].size() == 0) myregions.resize(0);
raster32->unlock();
}
/*-----------------------------------------------------------------*/
/*-
* 入力画像のアルファ値に比例して発生濃度を変える。Histogramを格納しながら領域を登録
* -*/
void Particles_Engine::fill_regions(
int frame, std::vector<std::vector<TPointD>> &myregions, TTile *ctrl1,
bool multi, int thres, bool do_source_gradation,
std::vector<std::vector<int>> &myHistogram) {
TRaster32P ctrl1ras = ctrl1->getRaster();
if (!ctrl1ras) return;
int i;
if (frame <= 0)
i = 0;
else
i = frame;
if (multi) {
fill_subregions(i, myregions, ctrl1, thres);
} else {
fill_single_region(myregions, ctrl1, thres, do_source_gradation,
myHistogram);
}
}
//----------------------------------------------------------------
/*-- Perspective
DistributionがONのとき、Sizeに刺さったControlImageが粒子の発生分布を決める。
そのとき、SourceのControlが刺さっている場合は、マスクとして用いられる
--*/
void Particles_Engine::fill_regions_with_size_map(
std::vector<std::vector<TPointD>> &myregions,
std::vector<std::vector<int>> &myHistogram, TTile *sizeTile,
TTile *sourceTile, int thres) {
TRaster32P sizeRas = sizeTile->getRaster();
if (!sizeRas) return;
TRaster32P sourceRas;
if (sourceTile) sourceRas = sourceTile->getRaster();
sizeRas->lock();
if (sourceRas) sourceRas->lock();
myregions.resize(1);
myregions[0].clear();
for (int i = 0; i < 256; i++) myHistogram.push_back(std::vector<int>());
for (int j = 0; j < sizeRas->getLy(); j++) {
TPixel32 *pix = sizeRas->pixels(j);
TPixel32 *endPix = pix + sizeRas->getLx();
TPixel32 *sourcePixHead = 0;
if (sourceRas) {
int sourceYPos = troundp(j + sizeTile->m_pos.y - sourceTile->m_pos.y);
if (sourceYPos >= 0 && sourceYPos < sourceRas->getLy())
sourcePixHead = sourceRas->pixels(sourceYPos);
}
int i = 0;
TPixel32 *sourcePix = 0;
while (pix < endPix) {
if (sourceRas) {
int sourceXPos = (int)(i + sizeTile->m_pos.x - sourceTile->m_pos.x);
if (sourcePixHead && sourceXPos >= 0 && sourceXPos < sourceRas->getLx())
sourcePix = sourcePixHead + sourceXPos;
else
sourcePix = 0;
} else
sourcePix = 0;
/*-
* Source画像があって、ピクセルがバウンディング外またはアルファが0なら抜かす。
* -*/
if (sourceRas && (!sourcePix || sourcePix->m <= thres)) {
}
/*-
明度に比例してパーティクルを発生させる。そのピクセルのアルファ値の数だけ「立候補」させる。-*/
else {
TPointD tmp;
tmp.y = j;
tmp.x = i;
tmp += sizeTile->m_pos;
int val = (int)TPixelGR8::from(*pix).value;
/*- Histogramの登録 -*/
myHistogram[val].push_back((int)myregions[0].size());
/*- 各Pointにウェイトを持たせる -*/
myregions[0].push_back(tmp);
}
i++;
pix++;
}
}
if (myregions[0].size() == 0) myregions.resize(0);
sizeRas->unlock();
if (sourceRas) sourceRas->unlock();
}