/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
static int syr_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
FLOAT *a, *x;
BLASLONG incx;
BLASLONG i, m_from, m_to;
FLOAT alpha_r;
#if defined(COMPLEX) && !defined(HER) && !defined(HERREV)
FLOAT alpha_i;
#endif
x = (FLOAT *)args -> a;
a = (FLOAT *)args -> b;
incx = args -> lda;
alpha_r = *((FLOAT *)args -> alpha + 0);
#if defined(COMPLEX) && !defined(HER) && !defined(HERREV)
alpha_i = *((FLOAT *)args -> alpha + 1);
#endif
m_from = 0;
m_to = args -> m;
if (range_m) {
m_from = *(range_m + 0);
m_to = *(range_m + 1);
}
if (incx != 1) {
#ifndef LOWER
COPY_K(m_to, x, incx, buffer, 1);
#else
COPY_K(args -> m - m_from, x + m_from * incx * COMPSIZE, incx, buffer + m_from * COMPSIZE, 1);
#endif
x = buffer;
}
#ifndef LOWER
a += (m_from + 1) * m_from / 2 * COMPSIZE;
#else
a += (2 * args -> m - m_from + 1) * m_from / 2 * COMPSIZE;
#endif
for (i = m_from; i < m_to; i++){
#if !defined(HEMV) && !defined(HEMVREV)
#ifndef COMPLEX
if (x[i] != ZERO) {
#ifndef LOWER
AXPYU_K(i + 1, 0, 0, alpha_r * x[i], x, 1, a, 1, NULL, 0);
#else
AXPYU_K(args -> m - i, 0, 0, alpha_r * x[i], x + i, 1, a, 1, NULL, 0);
#endif
}
#else
if ((x[i * COMPSIZE + 0] != ZERO) || (x[i * COMPSIZE + 1] != ZERO)) {
#ifndef LOWER
AXPYU_K(i + 1, 0, 0,
alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
x, 1, a, 1, NULL, 0);
#else
AXPYU_K(args -> m - i, 0, 0,
alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
x + i * COMPSIZE, 1, a, 1, NULL, 0);
#endif
}
#endif
#else
if ((x[i * COMPSIZE + 0] != ZERO) || (x[i * COMPSIZE + 1] != ZERO)) {
#ifndef HEMVREV
#ifndef LOWER
AXPYU_K(i + 1, 0, 0,
alpha_r * x[i * COMPSIZE + 0], - alpha_r * x[i * COMPSIZE + 1],
x, 1, a, 1, NULL, 0);
#else
AXPYU_K(args -> m - i, 0, 0,
alpha_r * x[i * COMPSIZE + 0], - alpha_r * x[i * COMPSIZE + 1],
x + i * COMPSIZE, 1, a, 1, NULL, 0);
#endif
#else
#ifndef LOWER
AXPYC_K(i + 1, 0, 0,
alpha_r * x[i * COMPSIZE + 0], alpha_r * x[i * COMPSIZE + 1],
x, 1, a, 1, NULL, 0);
#else
AXPYC_K(args -> m - i, 0, 0,
alpha_r * x[i * COMPSIZE + 0], alpha_r * x[i * COMPSIZE + 1],
x + i * COMPSIZE, 1, a, 1, NULL, 0);
#endif
#endif
}
#ifndef LOWER
a[i * COMPSIZE + 1] = ZERO;
#else
a[ 1] = ZERO;
#endif
#endif
#ifndef LOWER
a += (i + 1) * COMPSIZE;
#else
a += (args -> m - i) * COMPSIZE;
#endif
}
return 0;
}
#if !defined(COMPLEX) || defined(HEMV) || defined(HEMVREV)
int CNAME(BLASLONG m, FLOAT alpha, FLOAT *x, BLASLONG incx, FLOAT *a, FLOAT *buffer, int nthreads){
#else
int CNAME(BLASLONG m, FLOAT *alpha, FLOAT *x, BLASLONG incx, FLOAT *a, FLOAT *buffer, int nthreads){
#endif
blas_arg_t args;
blas_queue_t queue[MAX_CPU_NUMBER];
BLASLONG range_m[MAX_CPU_NUMBER + 1];
BLASLONG width, i, num_cpu;
double dnum;
int mask = 7;
#ifdef SMP
#ifndef COMPLEX
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_REAL;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_REAL;
#else
int mode = BLAS_SINGLE | BLAS_REAL;
#endif
#else
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_COMPLEX;
#else
int mode = BLAS_SINGLE | BLAS_COMPLEX;
#endif
#endif
#endif
args.m = m;
args.a = (void *)x;
args.b = (void *)a;
args.lda = incx;
#if !defined(COMPLEX) || defined(HEMV) || defined(HEMVREV)
args.alpha = (void *)α
#else
args.alpha = (void *)alpha;
#endif
dnum = (double)m * (double)m / (double)nthreads;
num_cpu = 0;
#ifndef LOWER
range_m[MAX_CPU_NUMBER] = m;
i = 0;
while (i < m){
if (nthreads - num_cpu > 1) {
double di = (double)(m - i);
if (di * di - dnum > 0) {
width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
} else {
width = m - i;
}
if (width < 16) width = 16;
if (width > m - i) width = m - i;
} else {
width = m - i;
}
range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = syr_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1];
queue[num_cpu].range_n = NULL;
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i += width;
}
#else
range_m[0] = 0;
i = 0;
while (i < m){
if (nthreads - num_cpu > 1) {
double di = (double)(m - i);
if (di * di - dnum > 0) {
width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
} else {
width = m - i;
}
if (width < 16) width = 16;
if (width > m - i) width = m - i;
} else {
width = m - i;
}
range_m[num_cpu + 1] = range_m[num_cpu] + width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = syr_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].range_m = &range_m[num_cpu];
queue[num_cpu].range_n = NULL;
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i += width;
}
#endif
if (num_cpu) {
queue[0].sa = NULL;
queue[0].sb = buffer;
queue[num_cpu - 1].next = NULL;
exec_blas(num_cpu, queue);
}
return 0;
}