#include "stdfx.h"
#include "tfxparam.h"
#include "warp.h"
#include "trop.h"
#include "trasterfx.h"
#include "tspectrumparam.h"
#include "gradients.h"
#include "timage_io.h"
#include "perlinnoise.h"
#include "tparamuiconcept.h"
//-------------------------------------------------------------------
class RandomWaveFx : public TStandardRasterFx {
FX_PLUGIN_DECLARATION(RandomWaveFx)
protected:
TRasterFxPort m_warped;
TDoubleParamP m_intensity;
TDoubleParamP m_gridStep;
TDoubleParamP m_evol;
TDoubleParamP m_posx;
TDoubleParamP m_posy;
TBoolParamP m_sharpen;
public:
RandomWaveFx()
: m_intensity(20)
, m_gridStep(2)
, m_evol(0.0)
, m_posx(0.0)
, m_posy(0.0)
, m_sharpen(false) {
m_posx->setMeasureName("fxLength");
m_posy->setMeasureName("fxLength");
addInputPort("Source", m_warped);
bindParam(this, "intensity", m_intensity);
bindParam(this, "sensitivity", m_gridStep);
bindParam(this, "evolution", m_evol);
bindParam(this, "positionx", m_posx);
bindParam(this, "positiony", m_posy);
bindParam(this, "sharpen", m_sharpen);
m_intensity->setValueRange(-1000, 1000);
m_gridStep->setValueRange(2, 20);
}
//-------------------------------------------------------------------
virtual ~RandomWaveFx() {}
//-------------------------------------------------------------------
void getParamUIs(TParamUIConcept *&concepts, int &length) {
concepts = new TParamUIConcept[length = 1];
concepts[0].m_type = TParamUIConcept::POINT_2;
concepts[0].m_label = "Position";
concepts[0].m_params.push_back(m_posx);
concepts[0].m_params.push_back(m_posy);
}
//-------------------------------------------------------------------
bool canHandle(const TRenderSettings &info, double frame) {
return isAlmostIsotropic(info.m_affine);
}
//-------------------------------------------------------------------
bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info) {
if (m_warped.isConnected()) {
int ret = m_warped->doGetBBox(frame, bBox, info);
if (ret && !bBox.isEmpty()) {
if (bBox != TConsts::infiniteRectD) {
WarpParams params;
params.m_intensity = m_intensity->getValue(frame);
bBox = bBox.enlarge(getWarpRadius(params));
}
return true;
}
}
bBox = TRectD();
return false;
}
//-------------------------------------------------------------------
void doDryCompute(TRectD &rect, double frame, const TRenderSettings &info) {
bool isWarped = m_warped.isConnected();
if (!isWarped) return;
if (fabs(m_intensity->getValue(frame)) < 0.01) {
m_warped->dryCompute(rect, frame, info);
return;
}
double scale = sqrt(fabs(info.m_affine.det()));
double gridStep = 1.5 * m_gridStep->getValue(frame);
WarpParams params;
params.m_intensity = m_intensity->getValue(frame) / gridStep;
params.m_warperScale = scale * gridStep;
params.m_sharpen = m_sharpen->getValue();
TRectD warpedBox, warpedComputeRect, tileComputeRect;
m_warped->getBBox(frame, warpedBox, info);
getWarpComputeRects(tileComputeRect, warpedComputeRect, warpedBox, rect,
params);
if (tileComputeRect.getLx() <= 0 || tileComputeRect.getLy() <= 0) return;
if (warpedComputeRect.getLx() <= 0 || warpedComputeRect.getLy() <= 0)
return;
m_warped->dryCompute(warpedComputeRect, frame, info);
}
//-------------------------------------------------------------------
void doCompute(TTile &tile, double frame, const TRenderSettings &info) {
bool isWarped = m_warped.isConnected();
if (!isWarped) return;
if (fabs(m_intensity->getValue(frame)) < 0.01) {
m_warped->compute(tile, frame, info);
return;
}
int shrink = (info.m_shrinkX + info.m_shrinkY) / 2;
double scale = sqrt(fabs(info.m_affine.det()));
double gridStep = 1.5 * m_gridStep->getValue(frame);
WarpParams params;
params.m_intensity = m_intensity->getValue(frame) / gridStep;
params.m_warperScale = scale * gridStep;
params.m_sharpen = m_sharpen->getValue();
params.m_shrink = shrink;
double evolution = m_evol->getValue(frame);
double size = 100.0 / info.m_shrinkX;
TPointD pos(m_posx->getValue(frame), m_posy->getValue(frame));
// The warper is calculated on a standard reference, with fixed dpi. This
// makes sure
// that the lattice created for the warp does not depend on camera
// transforms and resolution.
TRenderSettings warperInfo(info);
double warperScaleFactor = 1.0 / params.m_warperScale;
warperInfo.m_affine = TScale(warperScaleFactor) * info.m_affine;
// Retrieve tile's geometry
TRectD tileRect;
{
TRasterP tileRas = tile.getRaster();
tileRect =
TRectD(tile.m_pos, TDimensionD(tileRas->getLx(), tileRas->getLy()));
}
// Build the compute rect
TRectD warpedBox, warpedComputeRect, tileComputeRect;
m_warped->getBBox(frame, warpedBox, info);
getWarpComputeRects(tileComputeRect, warpedComputeRect, warpedBox, tileRect,
params);
if (tileComputeRect.getLx() <= 0 || tileComputeRect.getLy() <= 0) return;
if (warpedComputeRect.getLx() <= 0 || warpedComputeRect.getLy() <= 0)
return;
TRectD warperComputeRect(TScale(warperScaleFactor) * tileComputeRect);
double warperEnlargement = getWarperEnlargement(params);
warperComputeRect = warperComputeRect.enlarge(warperEnlargement);
warperComputeRect.x0 = tfloor(warperComputeRect.x0);
warperComputeRect.y0 = tfloor(warperComputeRect.y0);
warperComputeRect.x1 = tceil(warperComputeRect.x1);
warperComputeRect.y1 = tceil(warperComputeRect.y1);
// Compute the warped tile
TTile tileIn;
m_warped->allocateAndCompute(
tileIn, warpedComputeRect.getP00(),
TDimension(warpedComputeRect.getLx(), warpedComputeRect.getLy()),
tile.getRaster(), frame, info);
TRasterP rasIn = tileIn.getRaster();
// Compute the warper tile
TSpectrum::ColorKey colors[] = {TSpectrum::ColorKey(0, TPixel32::White),
TSpectrum::ColorKey(1, TPixel32::Black)};
TSpectrumParamP cloudscolors = TSpectrumParamP(tArrayCount(colors), colors);
// Build the warper
warperInfo.m_affine = warperInfo.m_affine;
TAffine aff = warperInfo.m_affine.inv();
TTile warperTile;
TRasterP rasWarper =
rasIn->create(warperComputeRect.getLx(), warperComputeRect.getLy());
warperTile.m_pos = warperComputeRect.getP00();
warperTile.setRaster(rasWarper);
{
TRenderSettings info2(warperInfo);
// Now, separate the part of the affine the Fx can handle from the rest.
TAffine fxHandledAffine = handledAffine(warperInfo, frame);
info2.m_affine = fxHandledAffine;
TAffine aff = warperInfo.m_affine * fxHandledAffine.inv();
aff.a13 /= warperInfo.m_shrinkX;
aff.a23 /= warperInfo.m_shrinkY;
TRectD rectIn = aff.inv() * warperComputeRect;
// rectIn = rectIn.enlarge(getResampleFilterRadius(info)); //Needed to
// counter the resample filter
TRect rectInI(tfloor(rectIn.x0), tfloor(rectIn.y0), tceil(rectIn.x1) - 1,
tceil(rectIn.y1) - 1);
// rasIn e' un raster dello stesso tipo di tile.getRaster()
TTile auxtile(
warperTile.getRaster()->create(rectInI.getLx(), rectInI.getLy()),
convert(rectInI.getP00()));
TPointD mypos(auxtile.m_pos - pos);
double scale2 = sqrt(fabs(info2.m_affine.det()));
doClouds(auxtile.getRaster(), cloudscolors, mypos, evolution, size, 0.0,
1.0, PNOISE_CLOUDS, scale2, frame);
info2.m_affine = aff;
TRasterFx::applyAffine(warperTile, auxtile, info2);
}
// Warp
TPointD db;
TRect rasComputeRectI(convert(tileComputeRect - tileRect.getP00(), db));
TRasterP tileRas = tile.getRaster()->extract(rasComputeRectI);
TPointD rasInPos(warpedComputeRect.getP00() - tileComputeRect.getP00());
TPointD warperPos(
(TScale(params.m_warperScale) * warperComputeRect.getP00()) -
tileComputeRect.getP00());
warp(tileRas, rasIn, rasWarper, rasInPos, warperPos, params);
}
//-------------------------------------------------------------------
int getMemoryRequirement(const TRectD &rect, double frame,
const TRenderSettings &info) {
// return -1; //Deactivated. This fx is currently very inefficient if
// subdivided!
int shrink = (info.m_shrinkX + info.m_shrinkY) / 2;
double scale = sqrt(fabs(info.m_affine.det()));
double gridStep = 1.5 * m_gridStep->getValue(frame);
WarpParams params;
params.m_intensity = m_intensity->getValue(frame) / gridStep;
params.m_warperScale = scale * gridStep;
params.m_sharpen = m_sharpen->getValue();
params.m_shrink = shrink;
double warperScaleFactor = 1.0 / params.m_warperScale;
TRectD warpedBox, warpedComputeRect, tileComputeRect;
m_warped->getBBox(frame, warpedBox, info);
getWarpComputeRects(tileComputeRect, warpedComputeRect, warpedBox, rect,
params);
TRectD warperComputeRect(TScale(warperScaleFactor) * tileComputeRect);
double warperEnlargement = getWarperEnlargement(params);
warperComputeRect = warperComputeRect.enlarge(warperEnlargement);
return std::max(TRasterFx::memorySize(warpedComputeRect, info.m_bpp),
TRasterFx::memorySize(warperComputeRect, info.m_bpp));
}
};
//-------------------------------------------------------------------
FX_PLUGIN_IDENTIFIER(RandomWaveFx, "randomWaveFx")