Blob Blame Raw
// Toonz includes
#include "tgeometry.h"
#include "tpalette.h"
#include "tstroke.h"
#include "tregion.h"
#include "tcolorutils.h"
#include "trasterimage.h"
#include "ttoonzimage.h"
#include "trop.h"
#include "trop_borders.h"
#include "tstrokeutil.h"
// template includes
#define INCLUDE_HPP
// tcg includes
#include "tcg_wrap.h"
#include "tcg/tcg_vertex.h"
#include "tcg/tcg_edge.h"
#include "tcg/tcg_face.h"
#include "tcg/tcg_mesh.h"
#include "tcg/tcg_hash.h"
#include "tcg/tcg_polylineops.h"
#include "tcg/tcg_sequence_ops.h"
#include "tcg/tcg_cyclic.h"
// Toonz includes
#include "../common/trop/raster_edge_evaluator.hpp"
#undef INCLUDE_HPP
// STL includes
#include <set>
#include "toonz/tcenterlinevectorizer.h"
//************************************************************************
// Local namespace stuff
//************************************************************************
namespace {
//===========================================================
// Colors stuff
//===========================================================
template <typename Pix>
Pix transparent();
template <>
inline TPixel32 transparent<TPixel32>() {
return TPixel32::Transparent;
}
template <>
inline TPixelGR16 transparent<TPixelGR16>() {
return TPixelGR16::Black;
}
//===========================================================
// Mesh stuff
//===========================================================
class Edge final : public tcg::Edge {
TPoint m_dirs[2];
TStroke *m_s;
public:
Edge() : tcg::Edge(), m_s(0) {}
Edge(int v1, const TPoint &dir1, int v2, const TPoint &dir2)
: tcg::Edge(v1, v2), m_s(0) {
m_dirs[0] = dir1, m_dirs[1] = dir2;
}
const TPoint &direction(int i) const { return m_dirs[i]; }
TPoint &direction(int i) { return m_dirs[i]; }
const TStroke *stroke() const { return m_s; }
void setStroke(TStroke *s) { m_s = s; }
};
//-------------------------------------------------------------------
typedef tcg::Mesh<tcg::Vertex<TPoint>, Edge, tcg::Face> LocalMesh;
//-------------------------------------------------------------------
int hashPoint(const TPoint &point) { return point.x ^ point.y; }
typedef int (*PointHashType)(const TPoint &);
//-------------------------------------------------------------------
size_t hashStroke(const TStroke *stroke) { return (size_t)stroke; }
typedef size_t (*StrokeHashType)(const TStroke *);
//===========================================================
// Vertex Adjustment
//===========================================================
struct Sums {
double m_sums_x, m_sums_y;
double m_sums2_x, m_sums2_y;
double m_sums_xy;
};
//-------------------------------------------------------------------
struct SumsBuilder {
const std::vector<double> &m_sums_x, &m_sums_y, &m_sums2_x, &m_sums2_y,
&m_sums_xy;
SumsBuilder(const std::vector<double> &sums_x,
const std::vector<double> &sums_y,
const std::vector<double> &sums2_x,
const std::vector<double> &sums2_y,
const std::vector<double> &sums_xy)
: m_sums_x(sums_x)
, m_sums_y(sums_y)
, m_sums2_x(sums2_x)
, m_sums2_y(sums2_y)
, m_sums_xy(sums_xy) {}
void build(Sums &sums, int idx0, int idx1) const {
sums.m_sums_x = m_sums_x[idx1] - m_sums_x[idx0];
sums.m_sums_y = m_sums_y[idx1] - m_sums_y[idx0];
sums.m_sums2_x = m_sums2_x[idx1] - m_sums2_x[idx0];
sums.m_sums2_y = m_sums2_y[idx1] - m_sums2_y[idx0];
sums.m_sums_xy = m_sums_xy[idx1] - m_sums_xy[idx0];
}
};
//-------------------------------------------------------------------
template <typename P1_type, typename P2_type>
void adjustVertex(const TPointD &origin, TPointD &point, P1_type p0,
Sums &sums0, int n0, P2_type p1, Sums &sums1, int n1) {
// Find the 2 best-fit lines
TPointD v0, v1;
tcg::point_ops::bestFit(p0, v0, sums0.m_sums_x, sums0.m_sums_y,
sums0.m_sums2_x, sums0.m_sums2_y, sums0.m_sums_xy,
n0);
tcg::point_ops::bestFit(p1, v1, sums1.m_sums_x, sums1.m_sums_y,
sums1.m_sums2_x, sums1.m_sums2_y, sums1.m_sums_xy,
n1);
// Get the intersecting point
double s, t;
tcg::point_ops::intersectionCoords(p0, v0, p1, v1, s, t, 1e-3);
if (s == tcg::numeric_ops::NaN<double>()) return;
// Adjust vertex - inside a 0.5 radius disc
TPointD newPoint(origin + p0 + s * v0), diff(newPoint - point);
double distance = norm(diff);
if (distance < 0.5)
point = newPoint;
else
point += (0.5 / distance) * diff;
}
//-------------------------------------------------------------------
void adjustVertices(const TPointD &origin, std::vector<TPointD> &points,
const std::vector<int> &indices,
const std::vector<double> &sums_x,
const std::vector<double> &sums_y,
const std::vector<double> &sums2_x,
const std::vector<double> &sums2_y,
const std::vector<double> &sums_xy) {
int i, last = points.size() - 1;
SumsBuilder sumsBuilder(sums_x, sums_y, sums2_x, sums2_y, sums_xy);
Sums sums0, sums1;
int prev0, prev1, next0, next1;
TPointD a0, a1;
if (points.front() == points.back()) {
prev0 = indices[last - 1] - 1, prev1 = indices[last],
next0 = indices[0] - 1, next1 = indices[1];
sumsBuilder.build(sums0, prev0, prev1);
sumsBuilder.build(sums1, next0, next1);
adjustVertex<TPointD &, TPointD &>(origin, points[0], a0, sums0,
prev1 - prev0, a1, sums1, next1 - next0);
points[last] = points[0];
for (i = 1; i < last; ++i) {
prev0 = indices[i - 1] - 1, prev1 = indices[i], next0 = indices[i] - 1,
next1 = indices[i + 1];
sumsBuilder.build(sums0, prev0, prev1);
sumsBuilder.build(sums1, next0, next1);
adjustVertex<TPointD &, TPointD &>(origin, points[i], a0, sums0,
prev1 - prev0, a1, sums1,
next1 - next0);
}
} else {
prev0 = indices[0], prev1 = indices[1], next0 = indices[1] - 1,
next1 = indices[2];
sumsBuilder.build(sums0, prev0, prev1);
sumsBuilder.build(sums1, next0, next1);
a0 = points[0];
adjustVertex<const TPointD &, TPointD &>(origin, points[1], a0, sums0,
prev1 - prev0 + 1, a1, sums1,
next1 - next0);
int end = last - 1;
for (i = 2; i < end; ++i) {
prev0 = indices[i - 1] - 1, prev1 = indices[i], next0 = indices[i] - 1,
next1 = indices[i + 1];
sumsBuilder.build(sums0, prev0, prev1);
sumsBuilder.build(sums1, next0, next1);
adjustVertex<TPointD &, TPointD &>(origin, points[i], a0, sums0,
prev1 - prev0, a1, sums1,
next1 - next0);
}
prev0 = indices[end - 1], prev1 = indices[end], next0 = indices[end] - 1,
next1 = indices[last];
sumsBuilder.build(sums0, prev0, prev1);
sumsBuilder.build(sums1, next0, next1);
a1 = points[last];
adjustVertex<const TPointD &, TPointD &>(
origin, points[1], a1, sums1, next1 - next0, a0, sums0, prev1 - prev0);
}
}
//************************************************************************
// Borders Reader declaration
//************************************************************************
template <typename RanIt>
class PolylineReader {
const NewOutlineConfiguration &m_conf;
double m_adherenceTol, m_angleTol, m_relativeTol, m_mergeTol;
TVectorImageP m_vi;
std::vector<TPointD> m_points;
std::vector<int> m_indices;
const RasterEdgeEvaluator<RanIt> *m_eval;
public:
PolylineReader(TVectorImageP vi, const NewOutlineConfiguration &conf)
: m_vi(vi)
, m_conf(conf)
, m_adherenceTol(2.0 * (1.0 - m_conf.m_adherenceTol))
, m_angleTol(cos(M_PI * m_conf.m_angleTol))
, m_relativeTol(conf.m_relativeTol)
, m_mergeTol(m_conf.m_mergeTol) {}
void setEvaluator(const RasterEdgeEvaluator<RanIt> *eval) { m_eval = eval; }
void openContainer(const RanIt &it);
void addElement(const RanIt &it);
void openContainer(const TPoint &p) { addElement(p); }
void addElement(const TPoint &p) { m_points.push_back(TPointD(p.x, p.y)); }
void closeContainer();
};
//************************************************************************
// Borders Reader declaration
//************************************************************************
template <typename Pix>
class BordersReader final : public TRop::borders::BordersReader {
public:
typedef Pix pixel_type;
typedef TPoint point_type;
typedef tcg::hash<TPoint, int, PointHashType> points_hash;
typedef typename std::pair<pixel_type, pixel_type> stroke_colors_type;
typedef
typename tcg::hash<const TStroke *, stroke_colors_type, StrokeHashType>
stroke_colors_hash;
typedef typename std::vector<TPoint>::iterator point_iterator;
typedef typename tcg::cyclic_iterator<point_iterator> cyclic_point_iterator;
private:
const TRasterPT<pixel_type> &m_ras;
int m_lx, m_ly, m_wrap;
LocalMesh *m_mesh;
PolylineReader<point_iterator> m_polylineReader;
PolylineReader<cyclic_point_iterator> m_loopReader;
TVectorImageP m_vi;
points_hash m_vHash;
pixel_type m_innerColor, m_outerColor;
stroke_colors_hash m_scHash;
// Current data
TPoint m_pos;
pixel_type *m_pix;
std::vector<TPoint> m_points;
// Last vertex data
TPoint m_dir;
int m_vIdx;
int m_nDirections;
// First vertex data
TPoint m_firstPos, m_firstDir, m_firstOppDir;
int m_firstVIdx;
int m_firstNDirections;
std::vector<TPoint> m_firstPoints;
public:
BordersReader(const TRasterPT<pixel_type> &ras, LocalMesh *mesh,
TVectorImageP vi, const NewOutlineConfiguration &conf)
: m_mesh(mesh)
, m_polylineReader(vi, conf)
, m_loopReader(vi, conf)
, m_vi(vi)
, m_vHash(&hashPoint)
, m_scHash(&hashStroke)
, m_ras(ras)
, m_lx(ras->getLx())
, m_ly(ras->getLy())
, m_wrap(ras->getWrap()) {}
void openContainer(const TPoint &pos, const TPoint &dir,
const pixel_type &innerColor,
const pixel_type &outerColor) override;
void addElement(const TPoint &pos, const TPoint &dir,
const pixel_type &outerColor) override;
void closeContainer() override;
int surroundingEdges();
int touchVertex(const TPoint &pos);
void touchEdge(int v0, const TPoint &d0, int nd0, int v1, const TPoint &d1,
int nd1);
const stroke_colors_hash &scHash() const { return m_scHash; }
};
} // namespace
//************************************************************************
// BordersReader implementation
//************************************************************************
template <typename Pix>
int ::BordersReader<Pix>::surroundingEdges() {
static const Pix transp(transparent<Pix>());
Pix ll((m_pos.x > 0 && m_pos.y > 0) ? *(m_pix - m_wrap - 1) : transp);
Pix lr((m_pos.x < m_lx && m_pos.y > 0) ? *(m_pix - m_wrap) : transp);
Pix ul((m_pos.x > 0 && m_pos.y < m_ly) ? *(m_pix - 1) : transp);
Pix ur((m_pos.x < m_lx && m_pos.y < m_ly) ? *(m_pix) : transp);
if (ll == ur || lr == ul) return 2;
int nEquals =
(int)(ll == lr) + (int)(lr == ur) + (int)(ur == ul) + (int)(ul == ll);
return 4 - nEquals;
}
//-------------------------------------------------------------------
template <typename Pix>
int ::BordersReader<Pix>::touchVertex(const TPoint &pos) {
points_hash::iterator it = m_vHash.find(pos);
if (it == m_vHash.end())
// No vertex found, add it now.
it = m_vHash.insert(m_pos, m_mesh->addVertex(LocalMesh::vertex_type(pos)));
return it->m_val;
}
//-------------------------------------------------------------------
template <typename Pix>
void ::BordersReader<Pix>::touchEdge(int v0, const TPoint &d0, int nd0, int v1,
const TPoint &d1, int nd1) {
typedef tcg::vertex_traits<LocalMesh::vertex_type>::edges_const_iterator
edge_const_it;
// Ensure that an associated edge is present, in case it should
const LocalMesh::vertex_type &vx0 = m_mesh->vertex(v0);
const LocalMesh::vertex_type &vx1 = m_mesh->vertex(v1);
// Peek each vertex edge, for the one with the right direction
int e;
edge_const_it it, end = vx1.edgesEnd();
for (it = vx1.edgesBegin(); it != end; ++it) {
Edge &ed = m_mesh->edge(*it);
int side = (int)(ed.vertex(1) == v1);
if (ed.direction(side) == d1) {
e = ed.getIndex();
break;
}
}
// If none was found, the edge must be added
if (it == end) {
e = m_mesh->addEdge(Edge(v0, d0, v1, d1));
// Also, insert it in the output vector image
if (m_points.size() == 2) {
m_polylineReader.openContainer(m_points[0]);
m_polylineReader.addElement(m_points[1]);
m_polylineReader.closeContainer();
} else {
if (m_points.front() == m_points.back()) {
point_iterator b = m_points.begin(), e = m_points.end() - 1;
cyclic_point_iterator beginC(b, b, e, 0), endC(b + 1, b, e, 1);
RasterEdgeEvaluator<cyclic_point_iterator> eval(
beginC - 1, endC + 1, 1.0, (std::numeric_limits<double>::max)());
m_loopReader.setEvaluator(&eval);
tcg::sequence_ops::minimalPath(beginC, endC, eval, m_loopReader);
} else {
RasterEdgeEvaluator<point_iterator> eval(
m_points.begin(), m_points.end(), 1.0,
(std::numeric_limits<double>::max)());
m_polylineReader.setEvaluator(&eval);
tcg::sequence_ops::minimalPath(m_points.begin(), m_points.end(), eval,
m_polylineReader);
}
}
Edge &ed = m_mesh->edge(e);
ed.setStroke(m_vi->getStroke(m_vi->getStrokeCount() - 1));
// Also, associate the extracted colors to the built stroke.
stroke_colors_type &colors = m_scHash[ed.stroke()];
colors.first = m_outerColor;
colors.second = m_innerColor;
}
// Finally, if the number of each vertex's incident edges has been reached,
// erase the corresponding hash entry.
/*{
if(nd0 == vx0.edgesCount())
m_vHash.erase(vx0.P());
if(nd1 == vx1.edgesCount())
m_vHash.erase(vx1.P());
}*/
}
//-------------------------------------------------------------------
template <typename Pix>
void ::BordersReader<Pix>::openContainer(const TPoint &pos, const TPoint &dir,
const pixel_type &innerColor,
const pixel_type &outerColor) {
// Store the associated color if not already present
m_innerColor = innerColor;
m_outerColor = outerColor;
// Build the initial pixel
m_pos = pos;
m_pix = m_ras->pixels(0) + m_ras->getWrap() * m_pos.y + m_pos.x;
m_points.push_back(m_pos);
m_dir = dir;
m_vIdx = -1;
m_nDirections = surroundingEdges();
m_firstPos = m_pos;
m_firstDir = m_dir;
m_firstVIdx = -1;
m_firstNDirections = m_nDirections;
m_firstOppDir = TPoint(1, 0);
if (m_nDirections > 2) {
// Found mesh vertex. Retrieve the associated vertex
m_vIdx = touchVertex(m_pos);
m_firstVIdx = m_vIdx;
m_firstPoints = m_points;
}
}
//-------------------------------------------------------------------
template <typename Pix>
void ::BordersReader<Pix>::addElement(const TPoint &pos, const TPoint &dir,
const Pix &outerColor) {
// Build opposite direction
bool horizontal = (pos.y == m_pos.y);
TPoint oppDir = horizontal ? TPoint((pos.x > m_pos.x) ? -1 : 1, 0)
: TPoint(0, (pos.y > m_pos.y) ? -1 : 1);
// Update position
m_pix += horizontal ? (pos.x - m_pos.x) : (pos.y - m_pos.y) * m_wrap;
m_pos = pos;
m_points.push_back(m_pos);
// Check the new pos
int nDirections = surroundingEdges();
if (nDirections > 2) {
// Found mesh vertex. First, check the hash for an associated vertex
int vIdx = touchVertex(m_pos);
// Ensure that an associated edge is present, in case it should
if (m_vIdx >= 0)
touchEdge(m_vIdx, m_dir, m_nDirections, vIdx, oppDir, nDirections);
else {
m_firstPos = m_pos;
m_firstDir = dir;
m_firstOppDir = oppDir;
m_firstVIdx = vIdx;
m_firstNDirections = nDirections;
m_firstPoints = m_points;
}
m_dir = dir;
m_vIdx = vIdx;
m_nDirections = nDirections;
m_outerColor = outerColor;
m_points.clear();
m_points.push_back(m_pos);
}
}
//-------------------------------------------------------------------
template <typename Pix>
void ::BordersReader<Pix>::closeContainer() {
// If no vertex was found, build one on the first position.
if (m_firstVIdx < 0) {
// Add a vertex at the first position.
m_firstVIdx = m_vIdx = touchVertex(m_firstPos);
m_dir = m_firstDir;
m_nDirections = m_firstNDirections;
m_firstPoints.push_back(m_firstPos);
}
// Connect the last vertex to the first.
m_points.insert(m_points.end(), m_firstPoints.begin(), m_firstPoints.end());
touchEdge(m_vIdx, m_dir, m_nDirections, m_firstVIdx, m_firstOppDir,
m_firstNDirections);
m_points.clear();
m_firstPoints.clear();
}
//===================================================================
template <typename RanIt>
void ::PolylineReader<RanIt>::openContainer(const RanIt &it) {
const TPoint &p = *it;
m_points.push_back(TPointD(p.x, p.y));
m_indices.push_back(it - m_eval->begin());
}
//-------------------------------------------------------------------
template <typename RanIt>
void ::PolylineReader<RanIt>::addElement(const RanIt &it) {
const TPoint &p = *it;
m_points.push_back(TPointD(p.x, p.y));
m_indices.push_back(it - m_eval->begin());
}
//-------------------------------------------------------------------
template <typename RanIt>
void ::PolylineReader<RanIt>::closeContainer() {
if (!m_indices.empty()) {
const TPoint &origI(*m_eval->begin());
TPointD origin(origI.x, origI.y);
::adjustVertices(origin, m_points, m_indices, m_eval->sums_x(),
m_eval->sums_y(), m_eval->sums2_x(), m_eval->sums2_y(),
m_eval->sums_xy());
}
std::vector<TThickPoint> cps;
polylineToQuadratics(m_points, cps, m_adherenceTol, m_angleTol, m_relativeTol,
0.75, m_mergeTol);
m_vi->addStroke(new TStroke(cps));
m_points.clear();
m_indices.clear();
}
//************************************************************************
// Palette functions
//************************************************************************
namespace {
void discretizeColors(TRaster32P &ras, TPalette *palette, int nColors,
TPixel32 transparentColor) {
// Extract the palette
std::set<TPixel32> colors;
TColorUtils::buildPalette(colors, ras, nColors);
colors.erase(TPixel::Black); // Black is automatically inserted by TPalette's
// constructor
std::set<TPixel32>::const_iterator it = colors.begin();
for (; it != colors.end(); ++it) palette->getPage(0)->addStyle(*it);
// Flatten ras to the specified palette
TPixel32 *pix, *line, *lineEnd;
int y, lx = ras->getLx(), ly = ras->getLy();
for (y = 0; y < ly; ++y) {
line = ras->pixels(y), lineEnd = line + lx;
for (pix = line; pix < lineEnd; ++pix)
*pix = (*pix == transparentColor)
? TPixel32::Transparent
: palette->getStyle(palette->getClosestStyle(*pix))
->getMainColor();
}
}
//===================================================================
void copyCM(TRasterGR16P &dst, const TRasterCM32P &src, int toneTol) {
assert(dst->getLx() == src->getLx() && dst->getLy() == src->getLy());
int y, lx = src->getLx(), ly = src->getLy();
TPixelCM32 *pixIn, *lineInEnd;
TPixelGR16 *pixOut;
for (y = 0; y < ly; ++y) {
pixIn = src->pixels(y), lineInEnd = pixIn + lx;
pixOut = dst->pixels(y);
for (; pixIn < lineInEnd; ++pixIn, ++pixOut)
pixOut->value =
(pixIn->getTone() < toneTol) ? pixIn->getInk() : pixIn->getPaint();
}
}
//===================================================================
typedef BordersReader<TPixel32>::stroke_colors_type stroke_colors_typeRGBM;
typedef BordersReader<TPixel32>::stroke_colors_hash stroke_colors_hashRGBM;
typedef BordersReader<TPixelGR16>::stroke_colors_type stroke_colors_typeCM;
typedef BordersReader<TPixelGR16>::stroke_colors_hash stroke_colors_hashCM;
//===================================================================
void buildColorsRGBM(TRegion *r, const stroke_colors_hashRGBM &scHash,
const TPaletteP palette) {
// Build r's color
UINT i, edgeCount = r->getEdgeCount();
for (i = 0; i < edgeCount; ++i) {
TEdge *ed = r->getEdge(i);
stroke_colors_hashRGBM::const_iterator it = scHash.find(ed->m_s);
if (it == scHash.end()) continue;
const stroke_colors_typeRGBM &colors = it->m_val;
int style;
if (ed->m_w0 < ed->m_w1) {
style = palette->getClosestStyle(colors.first);
ed->setStyle(style);
ed->m_s->setStyle(style ? style
: palette->getClosestStyle(colors.second));
} else {
style = palette->getClosestStyle(colors.second);
ed->setStyle(style);
ed->m_s->setStyle(style ? style : palette->getClosestStyle(colors.first));
}
}
// Build the color for its sub-regions
int j, rCount = r->getSubregionCount();
for (j = 0; j < rCount; ++j)
buildColorsRGBM(r->getSubregion(j), scHash, palette);
}
//-------------------------------------------------------------------
void buildColorsRGBM(TVectorImageP vi, const stroke_colors_hashRGBM &scHash) {
// For every region, find its color
int i, rCount = vi->getRegionCount();
for (i = 0; i < rCount; ++i)
buildColorsRGBM(vi->getRegion(i), scHash, vi->getPalette());
}
//-------------------------------------------------------------------
void buildColorsCM(TRegion *r, const stroke_colors_hashCM &scHash) {
// Build r's color
UINT i, edgeCount = r->getEdgeCount();
for (i = 0; i < edgeCount; ++i) {
TEdge *ed = r->getEdge(i);
stroke_colors_hashCM::const_iterator it = scHash.find(ed->m_s);
if (it == scHash.end()) continue;
const stroke_colors_typeCM &colors = it->m_val;
if (ed->m_w0 < ed->m_w1)
ed->setStyle(colors.first.value);
else
ed->setStyle(colors.second.value);
ed->m_s->setStyle(colors.first.value ? colors.first.value
: colors.second.value);
}
// Build the color for its sub-regions
int j, rCount = r->getSubregionCount();
for (j = 0; j < rCount; ++j) buildColorsCM(r->getSubregion(j), scHash);
}
//-------------------------------------------------------------------
void buildColorsCM(TVectorImageP vi, const stroke_colors_hashCM &scHash) {
// For every region, find its color
int i, rCount = vi->getRegionCount();
for (i = 0; i < rCount; ++i) buildColorsCM(vi->getRegion(i), scHash);
}
} // namespace
//************************************************************************
// Main functions
//************************************************************************
namespace {
void outlineVectorize(TVectorImageP &vi, const TRasterImageP &ri,
const NewOutlineConfiguration &conf, TPalette *palette) {
// Make a copy of ri's raster - a 32-bit raster
TRasterP ras(ri->getRaster());
TRaster32P ras32(ras->getSize());
TRop::copy(ras32, ras);
// Build palette color and discretize the raster
discretizeColors(ras32, palette, conf.m_maxColors, conf.m_transparentColor);
// Perform despeckling
if (conf.m_despeckling > 0)
TRop::majorityDespeckle(ras32, conf.m_despeckling);
// Examinate the discretized raster. Build a mesh structure representing the
// image's
// colors geometry. Build strokes as mesh edges are extracted.
LocalMesh mesh;
BordersReader<TPixel32> reader(ras32, &mesh, vi, conf);
TRop::borders::readBorders_simple(ras32, reader, false);
// Build regions
vi->transform(conf.m_affine);
vi->findRegions();
if (!conf.m_leaveUnpainted)
// Finally, build region colors.
buildColorsRGBM(vi, reader.scHash());
}
//-------------------------------------------------------------------
void outlineVectorize(TVectorImageP &vi, const TToonzImageP &ti,
const NewOutlineConfiguration &conf, TPalette *palette) {
TRasterCM32P ras(ti->getRaster());
TRasterGR16P rasGR16(ras->getSize());
::copyCM(rasGR16, ras, conf.m_toneTol);
// Perform despeckling
if (conf.m_despeckling > 0)
TRop::majorityDespeckle(rasGR16, conf.m_despeckling);
LocalMesh mesh;
BordersReader<TPixelGR16> reader(rasGR16, &mesh, vi, conf);
TRop::borders::readBorders_simple(rasGR16, reader, TPixelGR16::Black, false);
vi->transform(conf.m_affine);
vi->findRegions();
if (!conf.m_leaveUnpainted) buildColorsCM(vi, reader.scHash());
}
} // namespace
//-------------------------------------------------------------------
TVectorImageP VectorizerCore::newOutlineVectorize(
const TImageP &image, const NewOutlineConfiguration &conf,
TPalette *palette) {
TVectorImageP output(new TVectorImage);
output->setPalette(palette);
TRasterImageP ri(image);
TToonzImageP ti(image);
// Deal with palette (observe that if image is colormap, the input palette is
// directly copied to output)
if (ri)
::outlineVectorize(output, ri, conf, palette);
else if (ti)
::outlineVectorize(output, ti, conf, palette);
else
assert(false);
return output;
}