SUBROUTINE ZHBMVF( UPLO, N, K, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
INTEGER INCX, INCY, K, LDA, N
CHARACTER*1 UPLO
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* ZHBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian band matrix, with k super-diagonals.
*
* Parameters
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the band matrix A is being supplied as
* follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* being supplied.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* being supplied.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry, K specifies the number of super-diagonals of the
* matrix A. K must satisfy 0 .le. K.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
* by n part of the array A must contain the upper triangular
* band part of the hermitian matrix, supplied column by
* column, with the leading diagonal of the matrix in row
* ( k + 1 ) of the array, the first super-diagonal starting at
* position 2 in row k, and so on. The top left k by k triangle
* of the array A is not referenced.
* The following program segment will transfer the upper
* triangular part of a hermitian band matrix from conventional
* full matrix storage to band storage:
*
* DO 20, J = 1, N
* M = K + 1 - J
* DO 10, I = MAX( 1, J - K ), J
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
* by n part of the array A must contain the lower triangular
* band part of the hermitian matrix, supplied column by
* column, with the leading diagonal of the matrix in row 1 of
* the array, the first sub-diagonal starting at position 1 in
* row 2, and so on. The bottom right k by k triangle of the
* array A is not referenced.
* The following program segment will transfer the lower
* triangular part of a hermitian band matrix from conventional
* full matrix storage to band storage:
*
* DO 20, J = 1, N
* M = 1 - J
* DO 10, I = J, MIN( N, J + K )
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Note that the imaginary parts of the diagonal elements need
* not be set and are assumed to be zero.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( k + 1 ).
* Unchanged on exit.
*
* X - COMPLEX*16 array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - COMPLEX*16 .
* On entry, BETA specifies the scalar beta.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* .. Local Scalars ..
COMPLEX*16 TEMP1, TEMP2
INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX, MIN, DBLE
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
$ .NOT.LSAME( UPLO, 'L' ).AND.
$ .NOT.LSAME( UPLO, 'V' ).AND.
$ .NOT.LSAME( UPLO, 'M' ) )THEN
INFO = 1
ELSE IF( N.LT.0 )THEN
INFO = 2
ELSE IF( K.LT.0 )THEN
INFO = 3
ELSE IF( LDA.LT.( K + 1 ) )THEN
INFO = 6
ELSE IF( INCX.EQ.0 )THEN
INFO = 8
ELSE IF( INCY.EQ.0 )THEN
INFO = 11
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ZHBMV ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
* Set up the start points in X and Y.
*
IF( INCX.GT.0 )THEN
KX = 1
ELSE
KX = 1 - ( N - 1 )*INCX
END IF
IF( INCY.GT.0 )THEN
KY = 1
ELSE
KY = 1 - ( N - 1 )*INCY
END IF
*
* Start the operations. In this version the elements of the array A
* are accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF( BETA.NE.ONE )THEN
IF( INCY.EQ.1 )THEN
IF( BETA.EQ.ZERO )THEN
DO 10, I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE
DO 20, I = 1, N
Y( I ) = BETA*Y( I )
20 CONTINUE
END IF
ELSE
IY = KY
IF( BETA.EQ.ZERO )THEN
DO 30, I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40, I = 1, N
Y( IY ) = BETA*Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF( ALPHA.EQ.ZERO )
$ RETURN
*
* Form y when upper triangle of A is stored.
*
IF( LSAME( UPLO, 'U' ) )THEN
KPLUS1 = K + 1
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 60, J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
L = KPLUS1 - J
DO 50, I = MAX( 1, J - K ), J - 1
Y( I ) = Y( I ) + TEMP1*A( L + I, J )
TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( I )
50 CONTINUE
Y( J ) = Y( J ) + TEMP1*DBLE( A( KPLUS1, J ) )
$ + ALPHA*TEMP2
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80, J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
IX = KX
IY = KY
L = KPLUS1 - J
DO 70, I = MAX( 1, J - K ), J - 1
Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( IX )
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y( JY ) = Y( JY ) + TEMP1*DBLE( A( KPLUS1, J ) )
$ + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
IF( J.GT.K )THEN
KX = KX + INCX
KY = KY + INCY
END IF
80 CONTINUE
END IF
RETURN
ENDIF
*
* Form y when lower triangle of A is stored.
*
IF( LSAME( UPLO, 'L' ) )THEN
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 100, J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
Y( J ) = Y( J ) + TEMP1*DBLE( A( 1, J ) )
L = 1 - J
DO 90, I = J + 1, MIN( N, J + K )
Y( I ) = Y( I ) + TEMP1*A( L + I, J )
TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( I )
90 CONTINUE
Y( J ) = Y( J ) + ALPHA*TEMP2
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120, J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
Y( JY ) = Y( JY ) + TEMP1*DBLE( A( 1, J ) )
L = 1 - J
IX = JX
IY = JY
DO 110, I = J + 1, MIN( N, J + K )
IX = IX + INCX
IY = IY + INCY
Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( IX )
110 CONTINUE
Y( JY ) = Y( JY ) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
120 CONTINUE
END IF
RETURN
END IF
*
* Form y when upper triangle of A is stored.
*
IF( LSAME( UPLO, 'V' ) )THEN
KPLUS1 = K + 1
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 160, J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
L = KPLUS1 - J
DO 150, I = MAX( 1, J - K ), J - 1
Y( I ) = Y( I ) + TEMP1*DCONJG(A( L + I, J ))
TEMP2 = TEMP2 + A( L + I, J )*X( I )
150 CONTINUE
Y( J ) = Y( J ) + TEMP1*DBLE( A( KPLUS1, J ) )
$ + ALPHA*TEMP2
160 CONTINUE
ELSE
JX = KX
JY = KY
DO 180, J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
IX = KX
IY = KY
L = KPLUS1 - J
DO 170, I = MAX( 1, J - K ), J - 1
Y( IY ) = Y( IY ) + TEMP1*DCONJG(A( L + I, J ))
TEMP2 = TEMP2 + A( L + I, J )*X( IX )
IX = IX + INCX
IY = IY + INCY
170 CONTINUE
Y( JY ) = Y( JY ) + TEMP1*DBLE( A( KPLUS1, J ) )
$ + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
IF( J.GT.K )THEN
KX = KX + INCX
KY = KY + INCY
END IF
180 CONTINUE
END IF
RETURN
ENDIF
*
* Form y when lower triangle of A is stored.
*
IF( LSAME( UPLO, 'M' ) )THEN
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 200, J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
Y( J ) = Y( J ) + TEMP1*DBLE( A( 1, J ) )
L = 1 - J
DO 190, I = J + 1, MIN( N, J + K )
Y( I ) = Y( I ) + TEMP1*DCONJG(A( L + I, J ))
TEMP2 = TEMP2 + A( L + I, J )*X( I )
190 CONTINUE
Y( J ) = Y( J ) + ALPHA*TEMP2
200 CONTINUE
ELSE
JX = KX
JY = KY
DO 220, J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
Y( JY ) = Y( JY ) + TEMP1*DBLE( A( 1, J ) )
L = 1 - J
IX = JX
IY = JY
DO 210, I = J + 1, MIN( N, J + K )
IX = IX + INCX
IY = IY + INCY
Y( IY ) = Y( IY ) + TEMP1*DCONJG(A( L + I, J ))
TEMP2 = TEMP2 + A( L + I, J )*X( IX )
210 CONTINUE
Y( JY ) = Y( JY ) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
220 CONTINUE
END IF
RETURN
END IF
*
RETURN
*
* End of ZHBMV .
*
END