#include "tcenterlinevectP.h"
//#define _SSDEBUG // Uncomment to
// enable the debug viewer
//#define _UPDATE // Shows borders
// updated to current time
//====================================================
// Forward declarations
struct VectorizationContext;
//====================================================
//**************************************************************
// Rationale
//**************************************************************
/*
NOTE: Input is a vector of Contours, representing the borders of a
polygonal region. First border is the outer one, followed by internal
counter-borders; each Contour is itself a vector of "ContourNode"s,
ordered so that the region to be thinned is at the RIGHT of segments
formed by successive nodes.
Output is a Graph structure representing the straight skeleton of the
thinned region. Original contours survive the thinning procedure.
*/
//**************************************************************
// Straight Skeleton Debugger
//**************************************************************
#ifdef _SSDEBUG
#include <QWidget>
#include <QTransform>
#include <QEventLoop>
#include <QPainter>
#include <QMouseEvent>
#include <QWheelEvent>
class SSDebugger final : public QWidget {
public:
VectorizationContext &m_context;
QPoint m_pos, m_pressPos;
double m_scale;
QTransform m_transform;
QEventLoop m_loop;
public:
double m_height;
public:
SSDebugger(VectorizationContext &context);
~SSDebugger() {}
void loop() { m_loop.exec(); }
void paintEvent(QPaintEvent *event);
void keyPressEvent(QKeyEvent *event);
void mouseMoveEvent(QMouseEvent *event);
void mousePressEvent(QMouseEvent *event);
void mouseReleaseEvent(QMouseEvent *event);
void wheelEvent(QWheelEvent *event);
inline QPoint winToWorld(int x, int y);
inline QPoint worldToWin(double x, double y);
inline QPointF winToWorldF(int x, int y);
inline bool isOnScreen(ContourNode *node);
// Node Updates
TPointD updated(ContourNode *input);
};
#endif // _SSDEBUG
//**************************************************************
// Classes
//**************************************************************
class ContourEdge {
public:
enum { NOT_OPPOSITE = 0x1 };
public:
TPointD m_direction;
unsigned short m_attributes;
public:
ContourEdge() : m_attributes(0) {}
ContourEdge(TPointD dir) : m_direction(dir), m_attributes(0) {}
int hasAttribute(int attr) const { return m_attributes & attr; }
void setAttribute(int attr) { m_attributes |= attr; }
void clearAttribute(int attr) { m_attributes &= ~attr; }
};
//--------------------------------------------------------------------------
class IndexTable {
public:
typedef std::list<ContourNode *> IndexColumn;
std::vector<IndexColumn>
m_columns; //!< Contours set by 'column identifier'.
std::vector<int>
m_identifiers; //!< Column identifiers by original contour index.
// NOTE: Contours are stored in 'comb' structure (vector of lists) since
// contours may both
// be SPLIT (new entry in a list) and MERGED (two lists merge).
public:
IndexTable() {}
IndexColumn *operator[](int i) { return &m_columns[i]; }
IndexColumn &columnOfId(int id) { return m_columns[m_identifiers[id]]; }
// Initialization
void build(ContourFamily &family);
void clear();
// Specific handlers
IndexColumn::iterator find(ContourNode *index);
void merge(IndexColumn::iterator index1, IndexColumn::iterator index2);
void remove(IndexColumn::iterator index);
};
//--------------------------------------------------------------------------
class Event {
public:
/*! \remark Values are sorted by preference at simultaneous events. */
enum Type //! An event's possible types.
{ special, //!< A vertex event that is also an edge event (V case).
edge, //!< An edge shrinks to 0 length.
vertex, //!< Two contour nodes clash.
split_regenerate, //!< Placeholder type for split events that must be
//! regenerated.
split, //!< An edge is split by a clashing contour node.
failure };
public:
double m_height;
double m_displacement;
ContourNode *m_generator;
ContourNode *m_coGenerator;
Type m_type;
unsigned int m_algoritmicTime;
VectorizationContext *m_context;
public:
// In-builder event constructor
Event(ContourNode *generator, VectorizationContext *context);
// Event calculators
inline void calculateEdgeEvent();
inline void calculateSplitEvent();
// Auxiliary event calculators
inline double splitDisplacementWith(ContourNode *plane);
inline bool tryRayEdgeCollisionWith(ContourNode *edge);
// Event handlers
inline bool process();
inline void processEdgeEvent();
inline void processMaxEvent();
inline void processSplitEvent();
inline void processVertexEvent();
inline void processSpecialEvent();
private:
inline bool testRayEdgeCollision(ContourNode *opposite, double &displacement,
double &height, double &side1,
double &side2);
};
//--------------------------------------------------------------------------
struct EventGreater {
bool operator()(const Event &event1, const Event &event2) const {
return event1.m_height > event2.m_height ||
(event1.m_height == event2.m_height &&
event1.m_type > event2.m_type);
}
};
class Timeline final
: public std::priority_queue<Event, std::vector<Event>, EventGreater> {
public:
Timeline() {}
// NOTE: Timeline construction contains the most complex part of
// vectorization;
// progress bar partial notification happens there, so thisVectorizer's signal
// emission methods must be passed and used.
void build(ContourFamily &polygons, VectorizationContext &context,
VectorizerCore *thisVectorizer);
};
//==========================================================================
//--------------------------------------
// Preliminary methods/functions
//--------------------------------------
// IndexTable methods
void IndexTable::build(ContourFamily &family) {
unsigned int i;
m_columns.resize(family.size());
m_identifiers.resize(family.size());
// NOTE: At the beginning, m_identifiers= 1, .. , m_columns.size() - 1;
for (i = 0; i < m_columns.size(); ++i) {
m_identifiers[i] = i;
m_columns[i].push_back(&family[i][0]);
// Each node referenced in the Table is signed as 'head' of the cirular
// list.
family[i][0].setAttribute(ContourNode::HEAD);
}
}
//--------------------------------------------------------------------------
// Explanation: during the skeletonization process, ContourNodes and calculated
// Events are unaware of global index-changes generated by other events, so
// the position of index stored in one Event has to be retrieved in the
// IndexTable before event processing begins.
// NOTE: Can this be done in a more efficient way?...
inline IndexTable::IndexColumn::iterator IndexTable::find(ContourNode *sought) {
int indexId = m_identifiers[sought->m_ancestorContour];
IndexColumn::iterator res;
// Search for the HEAD attribute in index's Contour
for (; !sought->hasAttribute(ContourNode::HEAD); sought = sought->m_next)
;
// Finally, find index through our column
for (res = m_columns[indexId].begin(); (*res) != sought; ++res)
;
return res;
}
//--------------------------------------------------------------------------
// Handles active contour merging due to split/vertex events
void IndexTable::merge(IndexColumn::iterator index1,
IndexColumn::iterator index2) {
IndexColumn::iterator current;
int identifier1 = m_identifiers[(*index1)->m_ancestorContour],
identifier2 = m_identifiers[(*index2)->m_ancestorContour];
remove(index2); // We maintain only one index of the merged contour
// Now, append columns
if (!m_columns[identifier2].empty()) {
append<IndexTable::IndexColumn, IndexTable::IndexColumn::reverse_iterator>(
m_columns[identifier1], m_columns[identifier2]);
m_columns[identifier2].clear();
}
// Then, update stored identifiers
for (unsigned int k = 0; k < m_columns.size(); ++k) {
if (m_identifiers[k] == identifier2) m_identifiers[k] = identifier1;
}
}
//--------------------------------------------------------------------------
// Removes given index in Table
inline void IndexTable::remove(IndexColumn::iterator index) {
m_columns[m_identifiers[(*index)->m_ancestorContour]].erase(index);
}
//--------------------------------------------------------------------------
inline void IndexTable::clear() { m_columns.clear(), m_identifiers.clear(); }
//==========================================================================
// Straight Skeleton Algorithm
//==========================================================================
//------------------------------
// Global Variables
//------------------------------
struct VectorizationContext {
VectorizerCoreGlobals *m_globals;
// Globals
unsigned int m_totalNodes; // Number of original contour nodes
unsigned int m_contoursCount; // Number of contours in input region
IndexTable m_activeTable; // Index table of active contours
SkeletonGraph *m_output; // Output skeleton of input region
double m_currentHeight; // Height of our 'roof-flooding' process
Timeline m_timeline; // Ordered queue of all possible events
unsigned int m_algoritmicTime; // Number of events precessed up to now
// Containers
std::vector<ContourEdge> m_edgesHeap;
std::vector<ContourNode> m_nodesHeap; // of *non-original* nodes only
unsigned int m_nodesHeapCount; // number of nodes used in nodesHeap
//'Linear Axis-added' *pseudo-original* nodes and edges
std::vector<ContourNode> m_linearNodesHeap;
std::vector<ContourEdge> m_linearEdgesHeap;
unsigned int m_linearNodesHeapCount;
public:
VectorizationContext(VectorizerCoreGlobals *globals) : m_globals(globals) {}
ContourNode *getNode() { return &m_nodesHeap[m_nodesHeapCount++]; }
ContourNode *getLinearNode() {
return &m_linearNodesHeap[m_linearNodesHeapCount];
}
ContourEdge *getLinearEdge() {
return &m_linearEdgesHeap[m_linearNodesHeapCount++];
}
inline void addLinearNodeBefore(ContourNode *node);
inline void repairDegenerations(
const std::vector<ContourNode *> °enerates);
inline void prepareGlobals();
inline void prepareContours(ContourFamily &family);
inline void newSkeletonLink(unsigned int cur, ContourNode *node);
};
//--------------------------------------------------------------------------
// WARNING: To be launched only *after* prepareContours - node countings happen
// there
inline void VectorizationContext::prepareGlobals() {
// NOTE: Let n be the total number of nodes in the family, k the number of
// split events
// effectively happening in the process, m the number of original
// contours of the family.
// Now:
// * Each split event eliminates its generating reflex node and
// introduces
// two convex nodes
// * Each edge event eliminates its couple of generating nodes and
// introduces one new convex node
// * Each max event eliminates 3 generating nodes without introducing
// new ones
// So, split events introduce 2k non-original nodes, and (k-m+2) is the number
// of max events
// necessarily happening, since (m-1) are the *merging* split events.
// On the n+k-3(k-m+2) nodes remaining for pure edge events, as many
// non-original nodes are inserted.
//=> This yields 2k + n-2k+3m-6= n+3m-6 non-original nodes. Contemporaneous
// events such as
// vertex and special events can only decrease the number of non-original
// nodes requested.
// Initialize non-original nodes container
m_nodesHeap.resize(m_totalNodes + 3 * m_contoursCount - 6);
m_nodesHeapCount = 0;
// Reset time/height variables
m_currentHeight = 0;
m_algoritmicTime = 0;
// Clean IndexTable
m_activeTable.clear();
}
//--------------------------------------------------------------------------
inline void VectorizationContext::newSkeletonLink(unsigned int cur,
ContourNode *node) {
if (node->hasAttribute(ContourNode::SK_NODE_DROPPED)) {
SkeletonArc arcCopy(node);
m_output->newLink(node->m_outputNode, cur, arcCopy);
arcCopy.turn();
m_output->newLink(cur, node->m_outputNode, arcCopy);
}
}
//==========================================================================
//===================================
// Thinning Functions/Methods
//===================================
//--------------------------------------------------------------------------
//----------------------------------------
// Repair Polygon Degenerations
//----------------------------------------
// EXPLANATION: After "Polygonizer", there may be simpleness degenerations
// about polygons which are dangerous to deal in the thinning process.
// Typically, these correspond to cases in which node->m_direction.z ~ 0
//(too fast), and are concave.
// We then deal with them *before* the process begins, by splitting one
// such node in two slower ones (known as 'Linear Axis' method).
inline void VectorizationContext::addLinearNodeBefore(ContourNode *node) {
ContourNode *newNode = getLinearNode();
ContourEdge *newEdge = getLinearEdge();
newNode->m_position = node->m_position;
// Build new edge
if (node->m_direction.z < 0.1)
newEdge->m_direction = rotate270(node->m_edge->m_direction);
else
newEdge->m_direction = normalize(node->m_edge->m_direction +
node->m_prev->m_edge->m_direction);
newNode->m_edge = newEdge;
// Link newNode
newNode->m_prev = node->m_prev;
newNode->m_next = node;
node->m_prev->m_next = newNode;
node->m_prev = newNode;
// Build remaining infos
node->buildNodeInfos(); // Rebuild
newNode->buildNodeInfos();
newNode->m_updateTime = 0;
newNode->m_ancestor = node->m_ancestor;
newNode->m_ancestorContour = node->m_ancestorContour;
// Set node and newNode's edges not to be recognized as possible
// opposites by the other (could happen in *future* instants)
// *DO NOT REMOVE!*
node->m_notOpposites.push_back(newNode->m_edge);
node->m_notOpposites.push_back(newNode->m_prev->m_edge);
newNode->m_notOpposites.push_back(node->m_edge);
// Further sign newly added node
newNode->setAttribute(ContourNode::LINEAR_ADDED);
}
//--------------------------------------------------------------------------
inline void VectorizationContext::repairDegenerations(
const std::vector<ContourNode *> °enerates) {
unsigned int i;
m_linearNodesHeap.resize(degenerates.size());
m_linearEdgesHeap.resize(degenerates.size());
m_linearNodesHeapCount = 0;
for (i = 0; i < degenerates.size(); ++i) {
if (!degenerates[i]->hasAttribute(ContourNode::AMBIGUOUS_LEFT)) {
addLinearNodeBefore(degenerates[i]);
m_totalNodes++;
}
}
}
//--------------------------------------------------------------------------
//--------------------------------
// Node Infos Construction
//--------------------------------
inline void VectorizationContext::prepareContours(ContourFamily &family) {
std::vector<ContourNode *> degenerateNodes;
// Build circular links
unsigned int i, j, k;
unsigned int current;
m_contoursCount = family.size();
m_totalNodes = 0;
for (i = 0; i < family.size(); ++i) {
for (j = 0, k = family[i].size() - 1; j < family[i].size(); k = j, ++j) {
family[i][k].m_next = &family[i][j];
family[i][j].m_prev = &family[i][k];
}
m_totalNodes += family[i].size();
}
// Build node edges
m_edgesHeap.resize(m_totalNodes);
current = 0;
for (i = 0; i < family.size(); ++i) {
for (j = 0, k = family[i].size() - 1; j < family[i].size(); k = j, ++j) {
m_edgesHeap[current].m_direction = normalize(
planeProjection(family[i][j].m_position - family[i][k].m_position));
family[i][k].m_edge = &m_edgesHeap[current];
current++;
}
}
bool maxThicknessNotZero = m_globals->currConfig->m_maxThickness > 0.0;
// Now build remaining infos
for (i = 0; i < family.size(); ++i) {
for (j = 0; j < family[i].size(); ++j) {
family[i][j].buildNodeInfos();
family[i][j].m_updateTime = 0;
family[i][j].m_ancestor = j;
family[i][j].m_ancestorContour = i;
// Check the following degeneration
if (family[i][j].m_concave && family[i][j].m_direction.z < 0.3) {
// Push this node among degenerate ones
degenerateNodes.push_back(&family[i][j]);
}
// Insert output node in sharp angles
if (!family[i][j].m_concave && family[i][j].m_direction.z < 0.6 &&
maxThicknessNotZero) {
family[i][j].setAttribute(ContourNode::SK_NODE_DROPPED);
family[i][j].m_outputNode = m_output->newNode(family[i][j].m_position);
}
// Push on nodes having AMBIGUOUS_RIGHT attribute
if (family[i][j].hasAttribute(ContourNode::AMBIGUOUS_RIGHT))
family[i][j].m_position += 0.02 * family[i][j].m_direction;
}
}
// Finally, ensure polygon degenerations found are solved
if (maxThicknessNotZero) repairDegenerations(degenerateNodes);
}
//--------------------------------------------------------------------------
// WARNING: m_edge field of *this* and *previous* node must already be defined.
inline void ContourNode::buildNodeInfos(bool forceConvex) {
TPointD direction;
double parameter;
// Calculate node convexity
if (forceConvex)
m_concave = 0;
else if (cross(m_edge->m_direction, m_prev->m_edge->m_direction) < 0) {
m_concave = 1;
} else
m_concave = 0;
// Build node direction
direction = m_edge->m_direction - m_prev->m_edge->m_direction;
parameter = norm(direction);
if (parameter > 0.01) {
direction = direction * (1 / parameter);
if (m_concave) direction = -direction;
} else
direction = rotate270(m_edge->m_direction);
m_direction.x = direction.x;
m_direction.y = direction.y;
// Calculate node speed
m_direction.z = cross(planeProjection(m_direction), m_edge->m_direction);
if (m_direction.z < 0) m_direction.z = 0;
// Calculate angular momentum
m_AngularMomentum = cross(m_position, m_direction);
if (m_concave) {
m_AuxiliaryMomentum1 = m_AuxiliaryMomentum2 = m_AngularMomentum;
} else {
m_AuxiliaryMomentum1 =
cross(m_position,
T3DPointD(m_edge->m_direction.y, -m_edge->m_direction.x, 1));
m_AuxiliaryMomentum2 =
cross(m_position, T3DPointD(m_prev->m_edge->m_direction.y,
-m_prev->m_edge->m_direction.x, 1));
}
}
//--------------------------------------------------------------------------
//---------------------------------
// Timeline Construction
//---------------------------------
// NOTE: In the following, we achieve these results:
// * Build the timeline - events priority queue
// * Process those split events which *necessarily* happen
// Pre-processing of split events is useful in order to lower execution times.
// Each node is first associated to a random integer; then a referencing
// vector is ordered according to those integers - events are calculated
// following this order. Split events are therefore calculated sparsely
// along the polygons, allowing a significant time reduction effect.
class RandomizedNode {
public:
ContourNode *m_node;
int m_number;
RandomizedNode() {}
RandomizedNode(ContourNode *node) : m_node(node), m_number(rand()) {}
inline ContourNode *operator->(void) { return m_node; }
};
class RandomizedNodeLess {
public:
RandomizedNodeLess() {}
inline bool operator()(RandomizedNode a, RandomizedNode b) {
return (a.m_number < b.m_number);
}
};
//--------------------------------------------------------------------------
void Timeline::build(ContourFamily &polygons, VectorizationContext &context,
VectorizerCore *thisVectorizer) {
unsigned int i, j, current;
std::vector<RandomizedNode> nodesToBeTreated(context.m_totalNodes);
T3DPointD momentum, ray;
// Build casual ordered node-array
for (i = 0, current = 0; i < polygons.size(); ++i)
for (j = 0; j < polygons[i].size(); ++j)
nodesToBeTreated[current++] = RandomizedNode(&polygons[i][j]);
// Same for linear-added nodes
for (i = 0; i < context.m_linearNodesHeapCount; ++i)
nodesToBeTreated[current++] = RandomizedNode(&context.m_linearNodesHeap[i]);
double maxThickness = context.m_globals->currConfig->m_maxThickness;
// Compute events generated by nodes
// NOTE: are edge events to be computed BEFORE split ones?
for (i = 0; i < nodesToBeTreated.size(); ++i) {
// Break calculation at user cancel press
if (thisVectorizer->isCanceled()) break;
Event currentEvent(nodesToBeTreated[i].m_node, &context);
// Notify event calculation
if (!nodesToBeTreated[i].m_node->hasAttribute(ContourNode::LINEAR_ADDED))
thisVectorizer->emitPartialDone();
if (currentEvent.m_type != Event::failure &&
currentEvent.m_height < maxThickness)
#ifdef _PREPROCESS
if (currentEvent.m_type == Event::split) {
if (currentEvent.m_coGenerator->m_concave) {
ray =
T3DPointD(currentEvent.m_coGenerator->m_edge->m_direction.y,
-currentEvent.m_coGenerator->m_edge->m_direction.x, 1);
momentum = cross(currentEvent.m_coGenerator->m_position, ray);
if (currentEvent.m_generator->m_direction * momentum +
ray * currentEvent.m_generator->m_AngularMomentum <
0) {
timeline.push(currentEvent);
continue;
}
}
if (currentEvent.m_coGenerator->m_next->m_concave) {
ray =
T3DPointD(currentEvent.m_coGenerator->m_edge->m_direction.y,
-currentEvent.m_coGenerator->m_edge->m_direction.x, 1);
momentum = cross(currentEvent.m_coGenerator->m_next->m_position, ray);
if (currentEvent.m_generator->m_direction * momentum +
ray * currentEvent.m_generator->m_AngularMomentum >
0) {
timeline.push(currentEvent);
continue;
}
}
if (cross(currentEvent.m_generator->m_edge->m_direction,
currentEvent.m_coGenerator->m_edge->m_direction) > 0.02 &&
cross(currentEvent.m_coGenerator->m_edge->m_direction,
currentEvent.m_generator->m_prev->m_edge->m_direction) >
0.02) // 0.02 in comparison with 'parameter' in buildNodeInfos
{
// Pre-processing succeeded
currentEvent.process();
continue;
}
}
#endif
push(currentEvent);
}
}
//--------------------------------------------------------------------------
//------------------------------
// Event Calculation
//------------------------------
// Calculates event generated by input node
Event::Event(ContourNode *generator, VectorizationContext *context)
: m_height(infinity)
, m_displacement(infinity)
, m_generator(generator)
, m_type(failure)
, m_algoritmicTime(context->m_algoritmicTime)
, m_context(context) {
if (generator->m_concave)
calculateSplitEvent();
else
calculateEdgeEvent();
}
//--------------------------------------------------------------------------
// The edge event *generated by a node* is defined as the earliest edge event
// generated by its adjacent edges. Remember that 'edge events' correspond to
// those in which one edge gets 0 length.
inline void Event::calculateEdgeEvent() {
struct locals {
static inline void buildDisplacements(ContourNode *edgeFirst, double &d1,
double &d2) {
ContourNode *edgeSecond = edgeFirst->m_next;
// If bisectors are almost opposite, avoid: there must be another bisector
// colliding with m_generator *before* coGenerator - allowing a positive
// result here may interfere with it.
if ((edgeFirst->m_concave && edgeSecond->m_concave) ||
edgeFirst->m_direction * edgeSecond->m_direction < -0.9) {
d1 = d2 = -1.0;
return;
}
double det = edgeFirst->m_direction.y * edgeSecond->m_direction.x -
edgeFirst->m_direction.x * edgeSecond->m_direction.y;
double cx = edgeSecond->m_position.x - edgeFirst->m_position.x,
cy = edgeSecond->m_position.y - edgeFirst->m_position.y;
d1 = (edgeSecond->m_direction.x * cy - edgeSecond->m_direction.y * cx) /
det;
d2 =
(edgeFirst->m_direction.x * cy - edgeFirst->m_direction.y * cx) / det;
}
static inline double height(ContourNode *node, double displacement) {
return node->m_position.z + displacement * node->m_direction.z;
}
}; // locals
double minHeight, minDisplacement;
bool positiveEdgeDispl;
m_type = edge;
// Calculate the two possible displacement parameters
double firstDisplacement, prevDisplacement, nextDisplacement,
lastDisplacement;
// right == prev
locals::buildDisplacements(m_generator, nextDisplacement, lastDisplacement);
locals::buildDisplacements(m_generator->m_prev, firstDisplacement,
prevDisplacement);
// Take the smallest positive between them and assign the co-generator
// NOTE: In a missed vertex event, the threshold value is to compare with the
// possible pushes at the end of processSplit
// However, admitting slightly negative displacements should be ok: due to the
// weak linear axis imposed for concave
// vertices, it is impossible to have little negative displacements apart from
// the above mentioned pushed case.
// ..currently almost true..
static const double minusTol = -0.03;
bool prevDispPositive = (prevDisplacement > minusTol);
bool nextDispPositive = (nextDisplacement > minusTol);
if (nextDispPositive) {
if (!prevDispPositive || nextDisplacement < prevDisplacement) {
m_coGenerator = m_generator;
minDisplacement = nextDisplacement;
minHeight = locals::height(m_coGenerator, nextDisplacement);
positiveEdgeDispl = (nextDispPositive && lastDisplacement > minusTol);
} else {
m_coGenerator = m_generator->m_prev;
minDisplacement = prevDisplacement;
minHeight = locals::height(
m_coGenerator,
firstDisplacement); // Height is built on the edge's first
positiveEdgeDispl =
(prevDispPositive &&
firstDisplacement >
minusTol); // endpoint to have the same values on adjacent
} // generators. It's important for SPECIAL events.
} else if (prevDispPositive) {
m_coGenerator = m_generator->m_prev;
minDisplacement = prevDisplacement;
minHeight = locals::height(m_coGenerator, firstDisplacement); // Same here
positiveEdgeDispl = (prevDispPositive && firstDisplacement > minusTol);
} else {
m_type = failure;
return;
}
// NOTA: Le const di tolleranza sono da confrontare tra:
// a) i push alla fine di processSplit per evitare rogne coi vertex multipli
// b) Le condizioni di esclusione su side1 e side2 in trySplit che evitano a)
// c) Le condizioni di riconoscimento di vertex e special events - perche' se
// mancano...
// Special cases: (forse da raffinare le condizioni - comunque ora sono
// efficaci)
if (nextDispPositive && !m_generator->m_concave) {
if (m_generator->m_prev->m_concave && m_generator->m_next->m_concave &&
fabs(nextDisplacement - prevDisplacement) <
0.1) // condizione debole per escludere subito i casi evidentemente
// innocenti
{
// Check 'V' (special) event - can generate a new concave vertex
ContourNode *prevRay = m_generator->m_prev,
*nextRay = m_generator->m_next;
double side = prevRay->m_direction * nextRay->m_AngularMomentum +
nextRay->m_direction * prevRay->m_AngularMomentum;
// NOTE: fabs(side) / || prevRay->dir x nextRay->dir || is the distance
// between the two rays.
if (fabs(side) <
0.03 * norm(cross(prevRay->m_direction, nextRay->m_direction)))
m_type = special, m_coGenerator = m_generator;
} else if (fabs(nextDisplacement - prevDisplacement) < 0.01) {
// Then choose to make the event with a concave vertex (to resemble the
// 'LL' case)
m_coGenerator =
m_generator->m_next->m_concave ? m_generator : m_generator->m_prev;
}
}
// Now, if calculated height is coherent, this Event is valid.
if (positiveEdgeDispl // Edges shrinking to a point after a FORWARD
||
minHeight > m_context->m_currentHeight -
0.01) // displacement are processable - this dominates
m_height = minHeight,
m_displacement =
minDisplacement; // height considerations which may be affected by
else // numerical errors
m_type = failure;
}
//--------------------------------------------------------------------------
inline void Event::calculateSplitEvent() {
unsigned int i;
bool forceFirst;
ContourNode *opposite, *first, *last;
std::list<ContourNode *>::iterator currentContour;
// Sign *edges* not to be taken as possible opposites
for (i = 0; i < m_generator->m_notOpposites.size(); ++i)
m_generator->m_notOpposites[i]->setAttribute(ContourEdge::NOT_OPPOSITE);
// Check adjacent edge events
calculateEdgeEvent(); // DO NOT REMOVE - adjacent convexes may have
// been calculated too earlier
// First check opposites in the m_generator active contour
first =
m_generator->m_next->m_next; // Adjacent edges were already considered
last = m_generator->m_prev->m_prev; // by calculateEdgeEvents()
for (opposite = first; opposite != last; opposite = opposite->m_next) {
if (!opposite->m_edge->hasAttribute(ContourEdge::NOT_OPPOSITE))
tryRayEdgeCollisionWith(opposite);
}
IndexTable &activeTable = m_context->m_activeTable;
// Then, try in the remaining active contours whose identifier is != our
for (i = 0; i < activeTable.m_columns.size(); ++i) {
for (currentContour = activeTable[i]->begin();
currentContour != activeTable[i]->end(); currentContour++) {
// Da spostare sopra il 2o for
if (activeTable.m_identifiers[(*currentContour)->m_ancestorContour] !=
activeTable.m_identifiers[m_generator->m_ancestorContour]) {
first = *currentContour;
for (opposite = first, forceFirst = 1;
// Better the first next cond. - in case of thinning errors, at
// least it does not get loop'd.
!opposite->hasAttribute(ContourNode::HEAD) // opposite!=first
|| (forceFirst ? forceFirst = 0, 1 : 0);
opposite = opposite->m_next) {
if (!opposite->m_edge->hasAttribute(ContourEdge::NOT_OPPOSITE))
tryRayEdgeCollisionWith(opposite);
}
}
}
}
// Restore edge attributes
for (i = 0; i < m_generator->m_notOpposites.size(); ++i)
m_generator->m_notOpposites[i]->clearAttribute(ContourEdge::NOT_OPPOSITE);
}
//--------------------------------------------------------------------------
inline bool Event::testRayEdgeCollision(ContourNode *opposite,
double &displacement, double &height,
double &side1, double &side2) {
// Initialize test vectors
// NOTE: In the convex case, slab guards MUST be orthogonal to the edge, due
// to this case:
//
// ______/| the ray would not hit the edge - AND THUS FOREGO
// INTERACTION
// | WITH IT COMPLETELY
// -> |
T3DPointD firstSlabGuard =
opposite->m_concave ? opposite->m_direction
: T3DPointD(opposite->m_edge->m_direction.y,
-opposite->m_edge->m_direction.x, 1);
T3DPointD lastSlabGuard =
opposite->m_next->m_concave
? opposite->m_next->m_direction
: T3DPointD(opposite->m_edge->m_direction.y,
-opposite->m_edge->m_direction.x, 1);
T3DPointD roofSlabOrthogonal(-opposite->m_edge->m_direction.y,
opposite->m_edge->m_direction.x, 1);
if (roofSlabOrthogonal * (opposite->m_position - m_generator->m_position) >
-0.01 // Ray's vertex generator is below the roof slab
//&& roofSlabOrthogonal * m_generator->m_direction > 0
//// Ray must go 'against' the roof slab
&&
planeProjection(roofSlabOrthogonal) *
planeProjection(m_generator->m_direction) >
0 // Ray must go against the opposing edge
&&
(side1 = m_generator->m_direction *
opposite->m_AuxiliaryMomentum1 + // Ray must pass inside the
// first slab guard
firstSlabGuard * m_generator->m_AngularMomentum) > -0.01 //
&&
(side2 = m_generator->m_direction *
opposite->m_next->m_AuxiliaryMomentum2 + // Ray must pass
// inside the
// second slab
// guard
lastSlabGuard * m_generator->m_AngularMomentum) < 0.01 //
&&
(m_generator->m_ancestorContour !=
opposite->m_ancestorContour // Helps with immediate splits from
// coincident
|| m_generator->m_ancestor != opposite->m_ancestor)) // linear vertexes
{
displacement = splitDisplacementWith(opposite);
// Possible Security checks for almost complanarity cases
//----------------------------------------
if (displacement > -0.01 && displacement < 0.01) {
T3DPointD slabLeftOrthogonal(-opposite->m_edge->m_direction.y,
opposite->m_edge->m_direction.x, 1);
double check1 =
(m_generator->m_position - opposite->m_position) *
normalize(cross(opposite->m_direction, slabLeftOrthogonal));
double check2 =
(m_generator->m_position - opposite->m_next->m_position) *
normalize(cross(opposite->m_next->m_direction, slabLeftOrthogonal));
if (check1 > 0.02 || check2 < -0.02) return false;
}
//----------------------------------------
// Check height/displacement conditions
if (displacement > -0.01 &&
displacement < m_displacement + 0.01 // admitting concurrent events
&&
(height = m_generator->m_position.z +
displacement * m_generator->m_direction.z) >
m_context->m_currentHeight - 0.01)
return true;
}
return false;
}
//--------------------------------------------------------------------------
inline bool Event::tryRayEdgeCollisionWith(ContourNode *opposite) {
ContourNode *newCoGenerator;
Type type;
double displacement, height, side1, side2;
if (testRayEdgeCollision(opposite, displacement, height, side1, side2)) {
type = split_regenerate;
newCoGenerator = opposite;
// Check against the REAL slab guards for type deduction
double firstSide =
opposite->m_concave
? side1
: m_generator->m_direction * opposite->m_AngularMomentum +
opposite->m_direction * m_generator->m_AngularMomentum,
secondSide = opposite->m_next->m_concave
? side2
: m_generator->m_direction *
opposite->m_next->m_AngularMomentum +
opposite->m_next->m_direction *
m_generator->m_AngularMomentum;
if (firstSide > -0.01 && secondSide < 0.01) {
double displacement_, height_;
if (firstSide < 0.01) {
// Ray hits first extremity of edge
if (opposite->m_concave ||
testRayEdgeCollision(opposite->m_prev, displacement_, height_,
side1, side2))
type = vertex;
} else if (secondSide > -0.01) {
// Ray hits second extremity of edge
if (opposite->m_next->m_concave ||
testRayEdgeCollision(opposite->m_next, displacement_, height_,
side1, side2)) {
type = vertex;
newCoGenerator = opposite->m_next;
}
} else
type = split;
}
if (type == split_regenerate &&
height <=
m_context
->m_currentHeight) // Split regeneration is allowed only at
return false; // future times
// If competing with another event split/vertex, approve replacement only if
// the angle
// between m_generator and newCoGenerator is < than with current
// m_coGenerator.
if (m_type != edge && fabs(displacement - m_displacement) < 0.01 &&
angleLess(m_coGenerator->m_edge->m_direction,
newCoGenerator->m_edge->m_direction,
m_generator->m_edge->m_direction))
return false;
// Pero' nel caso di quasi contemporaneo con un convesso, puo' permettere di
// scegliere quello con Displacement > !! ...
// Da rivedere... (cmq succede raramente che crei grossi problemi)
m_type = type, m_coGenerator = newCoGenerator;
m_displacement = displacement, m_height = height;
return true;
}
return false;
}
//--------------------------------------------------------------------------
inline double Event::splitDisplacementWith(ContourNode *slab) {
TPointD slabLeftOrthogonal(-slab->m_edge->m_direction.y,
slab->m_edge->m_direction.x);
double denom = m_generator->m_direction.z +
slabLeftOrthogonal * TPointD(m_generator->m_direction.x,
m_generator->m_direction.y);
if (denom < 0.01)
return -1; // generator-emitted ray is almost parallel to slab
TPointD difference =
planeProjection(slab->m_position - m_generator->m_position);
return (slabLeftOrthogonal * difference + slab->m_position.z -
m_generator->m_position.z) /
denom;
}
//--------------------------------------------------------------------------
//------------------------------
// Event Processing
//------------------------------
// Event::Process discriminates event types and calls their specific handlers
inline bool Event::process() {
Timeline &timeline = m_context->m_timeline;
unsigned int &algoritmicTime = m_context->m_algoritmicTime;
if (!m_generator->hasAttribute(ContourNode::ELIMINATED)) {
switch (m_type) {
case special:
assert(!m_coGenerator->hasAttribute(ContourNode::ELIMINATED));
if (m_coGenerator->m_prev->hasAttribute(
ContourNode::ELIMINATED) || // These two are most probably
// useless - could
m_coGenerator->m_next->hasAttribute(
ContourNode::ELIMINATED) || // try to remove them once I'm in for
// some testing...
m_algoritmicTime < m_coGenerator->m_prev->m_updateTime ||
m_algoritmicTime < m_coGenerator->m_next->m_updateTime) {
// recalculate event
Event newEvent(m_generator, m_context);
if (newEvent.m_type != failure) timeline.push(newEvent);
return false;
}
// else allow processing
algoritmicTime++;
processSpecialEvent();
break;
case edge:
if (m_coGenerator->hasAttribute(ContourNode::ELIMINATED) ||
m_algoritmicTime < m_coGenerator->m_next->m_updateTime) {
// recalculate event
Event newEvent(m_generator, m_context);
if (newEvent.m_type != failure) timeline.push(newEvent);
return false;
}
// Deal with edge superposition cases *only* when m_generator has the
// m_direction.z == 0.0
if ((m_coGenerator->m_direction.z == 0.0 &&
m_coGenerator != m_generator) ||
(m_coGenerator->m_next->m_direction.z == 0.0 &&
m_coGenerator == m_generator))
return false;
// else allow processing
algoritmicTime++; // global
if (m_generator->m_next->m_next == m_generator->m_prev)
processMaxEvent();
else
processEdgeEvent();
break;
case vertex:
if (m_coGenerator->hasAttribute(ContourNode::ELIMINATED)) {
// recalculate event
Event newEvent(m_generator, m_context);
if (newEvent.m_type != failure) timeline.push(newEvent);
return false;
}
// Unlike the split case, we don't need to rebuild if
// the event is not up to date with m_coGenerator - since
// the event is not about splitting an edge
if (m_coGenerator ==
m_generator->m_next
->m_next // CAN devolve to a special event - which should
||
m_coGenerator ==
m_generator->m_prev
->m_prev) // already be present in the timeline
return false;
// then, process it
algoritmicTime++;
processVertexEvent();
break;
case split_regenerate:
if (m_coGenerator->hasAttribute(ContourNode::ELIMINATED) ||
(m_algoritmicTime < m_coGenerator->m_next->m_updateTime)) {
// recalculate event
Event newEvent(m_generator, m_context);
if (newEvent.m_type != failure) timeline.push(newEvent);
return false;
}
// This may actually happen on current implementation, due to quirky event
// generation and preferential events rejection. See function tryRay..()
// around the end. Historically resolved to a split event, so we maintain
// that.
// assert(false);
/* fallthrough */
case split: // No break is intended
if (m_coGenerator->hasAttribute(ContourNode::ELIMINATED) ||
(m_algoritmicTime < m_coGenerator->m_next->m_updateTime)) {
// recalculate event
Event newEvent(m_generator, m_context);
if (newEvent.m_type != failure) timeline.push(newEvent);
return false;
}
// else allow processing (but check these conditions)
if (m_coGenerator != m_generator->m_next &&
m_coGenerator !=
m_generator->m_prev
->m_prev) // Because another edge already occurs at his place
{
algoritmicTime++;
processSplitEvent();
}
break;
}
}
return true; // Processing succeeded
}
//--------------------------------------------------------------------------
// EXPLANATION: Here is the typical case:
// \ /
// \ x /
// 2---1 = m_coGenerator
// m_coGenerator's edge reduces to 0. Then, nodes 1 and 2 gets ELIMINATED from
// the active contour and a new node at position "x" is placed instead.
// Observe also that nodes 1 or 2 may be concave (but not both)...
inline void Event::processEdgeEvent() {
ContourNode *newNode;
T3DPointD position(m_generator->m_position +
m_displacement * m_generator->m_direction);
// Eliminate and unlink extremities of m_coGenerator's edge
m_coGenerator->setAttribute(ContourNode::ELIMINATED);
m_coGenerator->m_next->setAttribute(ContourNode::ELIMINATED);
// Then, take a node from heap and insert it at their place.
newNode = m_context->getNode();
newNode->m_position = position;
newNode->m_next = m_coGenerator->m_next->m_next;
m_coGenerator->m_next->m_next->m_prev = newNode;
newNode->m_prev = m_coGenerator->m_prev;
m_coGenerator->m_prev->m_next = newNode;
// Then, initialize new node (however, 3rd component is m_height...)
newNode->m_position =
m_generator->m_position + m_displacement * m_generator->m_direction;
newNode->m_edge = m_coGenerator->m_next->m_edge;
newNode->buildNodeInfos(1); // 1 => Force convex node
newNode->m_ancestor = m_coGenerator->m_next->m_ancestor;
newNode->m_ancestorContour = m_coGenerator->m_next->m_ancestorContour;
newNode->m_updateTime = m_context->m_algoritmicTime;
// We allocate an output vertex on newNode's position under these conditions
// NOTE: Update once graph_old is replaced
if (newNode->m_direction.z < 0.7 ||
m_coGenerator->hasAttribute(ContourNode::SK_NODE_DROPPED) ||
m_coGenerator->m_next->hasAttribute(ContourNode::SK_NODE_DROPPED)) {
newNode->setAttribute(ContourNode::SK_NODE_DROPPED);
newNode->m_outputNode = m_context->m_output->newNode(position);
m_context->newSkeletonLink(newNode->m_outputNode, m_coGenerator);
m_context->newSkeletonLink(newNode->m_outputNode, m_coGenerator->m_next);
}
// If m_coGenerator or its m_next is HEAD of this contour, then
// redefine newNode as the new head.
if (m_coGenerator->hasAttribute(ContourNode::HEAD) ||
m_coGenerator->m_next->hasAttribute(ContourNode::HEAD)) {
std::list<ContourNode *>::iterator it;
std::list<ContourNode *> &column =
m_context->m_activeTable.columnOfId(m_generator->m_ancestorContour);
for (it = column.begin(); !(*it)->hasAttribute(ContourNode::ELIMINATED);
++it)
;
// assert(*it == m_coGenerator || *it == m_coGenerator->m_next);
*it = newNode, newNode->setAttribute(ContourNode::HEAD);
}
// Finally, calculate the Event raising by newNode
Event newEvent(newNode, m_context);
if (newEvent.m_type != Event::failure) m_context->m_timeline.push(newEvent);
}
//--------------------------------------------------------------------------
// Typical triangle case
inline void Event::processMaxEvent() {
T3DPointD position(m_generator->m_position +
m_displacement * m_generator->m_direction);
unsigned int outputNode = m_context->m_output->newNode(position);
m_context->newSkeletonLink(outputNode, m_generator);
m_context->newSkeletonLink(outputNode, m_generator->m_prev);
m_context->newSkeletonLink(outputNode, m_generator->m_next);
// Then remove active contour and eliminate nodes
std::list<ContourNode *>::iterator eventVertexIndex =
m_context->m_activeTable.find(m_generator);
m_context->m_activeTable.remove(eventVertexIndex);
m_generator->setAttribute(ContourNode::ELIMINATED);
m_generator->m_prev->setAttribute(ContourNode::ELIMINATED);
m_generator->m_next->setAttribute(ContourNode::ELIMINATED);
}
//--------------------------------------------------------------------------
// EXPLANATION: Ordinary split event:
// m_coGenerator = a'---------b'
// x
// b = m_generator
// / \
// c a
// We eliminate b and split/merge the border/s represented in the scheme.
inline void Event::processSplitEvent() {
ContourNode *newLeftNode,
*newRightNode; // left-right in the sense of the picture
T3DPointD position(m_generator->m_position +
m_displacement * m_generator->m_direction);
IndexTable &activeTable = m_context->m_activeTable;
unsigned int &algoritmicTime = m_context->m_algoritmicTime;
// First, we find in the Index Table the contours involved
std::list<ContourNode *>::iterator genContour, coGenContour;
genContour = activeTable.find(m_generator);
if (activeTable.m_identifiers[m_generator->m_ancestorContour] !=
activeTable.m_identifiers[m_coGenerator->m_ancestorContour]) {
// We have two different contours, that merge in one
coGenContour = activeTable.find(m_coGenerator);
}
// Now, update known nodes
m_generator->setAttribute(ContourNode::ELIMINATED);
// Allocate 2 new nodes and link the following way:
newLeftNode = m_context->getNode();
newRightNode = m_context->getNode();
newLeftNode->m_position = newRightNode->m_position = position;
// On the right side
m_coGenerator->m_next->m_prev = newRightNode;
newRightNode->m_next = m_coGenerator->m_next;
m_generator->m_prev->m_next = newRightNode;
newRightNode->m_prev = m_generator->m_prev;
// On the left side
m_coGenerator->m_next = newLeftNode;
newLeftNode->m_prev = m_coGenerator;
m_generator->m_next->m_prev = newLeftNode;
newLeftNode->m_next = m_generator->m_next;
// Assign and calculate the new nodes' information
newLeftNode->m_edge = m_generator->m_edge;
newRightNode->m_edge = m_coGenerator->m_edge;
newLeftNode->m_ancestor = m_generator->m_ancestor;
newLeftNode->m_ancestorContour = m_generator->m_ancestorContour;
newRightNode->m_ancestor = m_coGenerator->m_ancestor;
newRightNode->m_ancestorContour = m_coGenerator->m_ancestorContour;
// We can force the new nodes to be convex
newLeftNode->buildNodeInfos(1);
newRightNode->buildNodeInfos(1);
newLeftNode->m_updateTime = newRightNode->m_updateTime = algoritmicTime;
// Now, output the found interaction
newLeftNode->setAttribute(ContourNode::SK_NODE_DROPPED);
newRightNode->setAttribute(ContourNode::SK_NODE_DROPPED);
newLeftNode->m_outputNode = m_context->m_output->newNode(position);
newRightNode->m_outputNode = newLeftNode->m_outputNode;
m_context->newSkeletonLink(newLeftNode->m_outputNode, m_generator);
// Update the active Index Table:
if (activeTable.m_identifiers[m_generator->m_ancestorContour] !=
activeTable.m_identifiers[m_coGenerator->m_ancestorContour]) {
// If we have two different contours, they merge in one
// We keep coGenContour and remove genContour
(*genContour)->clearAttribute(ContourNode::HEAD);
activeTable.merge(coGenContour, genContour);
} else {
// Else we have only one contour, which splits in two
(*genContour)->clearAttribute(ContourNode::HEAD);
*genContour = newLeftNode;
newLeftNode->setAttribute(ContourNode::HEAD);
newRightNode->setAttribute(ContourNode::HEAD);
activeTable.columnOfId(m_generator->m_ancestorContour)
.push_back(newRightNode);
}
// (Vertex compatibility): Moving newRightNode a bit on
newRightNode->m_position += 0.02 * newRightNode->m_direction;
// Finally, calculate the new left and right Events
Event newLeftEvent(newLeftNode, m_context);
if (newLeftEvent.m_type != Event::failure)
m_context->m_timeline.push(newLeftEvent);
Event newRightEvent(newRightNode, m_context);
if (newRightEvent.m_type != Event::failure)
m_context->m_timeline.push(newRightEvent);
}
//--------------------------------------------------------------------------
// EXPLANATION:
// c L a'
// \ /
// m_generator = b x b' = m_coGenerator
// / \
// a R c'
// Reflex vertices b and b' collide. Observe that a new reflex vertex may rise
// here.
inline void Event::processVertexEvent() {
ContourNode *newLeftNode,
*newRightNode; // left-right in the sense of the picture
T3DPointD position(m_generator->m_position +
m_displacement * m_generator->m_direction);
IndexTable &activeTable = m_context->m_activeTable;
unsigned int &algoritmicTime = m_context->m_algoritmicTime;
// First, we find in the Index Table the contours involved
std::list<ContourNode *>::iterator genContour, coGenContour;
genContour = activeTable.find(m_generator);
if (activeTable.m_identifiers[m_generator->m_ancestorContour] !=
activeTable.m_identifiers[m_coGenerator->m_ancestorContour]) {
// We have two different contours, that merge in one
coGenContour = activeTable.find(m_coGenerator);
}
// Now, update known nodes
m_generator->setAttribute(ContourNode::ELIMINATED);
m_coGenerator->setAttribute(ContourNode::ELIMINATED);
// Allocate 2 new nodes and link the following way:
newLeftNode = m_context->getNode();
newRightNode = m_context->getNode();
newLeftNode->m_position = newRightNode->m_position = position;
// On the right side
m_coGenerator->m_next->m_prev = newRightNode;
newRightNode->m_next = m_coGenerator->m_next;
m_generator->m_prev->m_next = newRightNode;
newRightNode->m_prev = m_generator->m_prev;
// On the left side
m_coGenerator->m_prev->m_next = newLeftNode;
newLeftNode->m_prev = m_coGenerator->m_prev;
m_generator->m_next->m_prev = newLeftNode;
newLeftNode->m_next = m_generator->m_next;
// Assign and calculate the new nodes' information
newLeftNode->m_edge = m_generator->m_edge;
newRightNode->m_edge = m_coGenerator->m_edge;
newLeftNode->m_ancestor = m_generator->m_ancestor;
newLeftNode->m_ancestorContour = m_generator->m_ancestorContour;
newRightNode->m_ancestor = m_coGenerator->m_ancestor;
newRightNode->m_ancestorContour = m_coGenerator->m_ancestorContour;
// We *CAN'T* force the new nodes to be convex here
newLeftNode->buildNodeInfos();
newRightNode->buildNodeInfos();
newLeftNode->m_updateTime = newRightNode->m_updateTime = algoritmicTime;
// Now, output the found interaction
newLeftNode->setAttribute(ContourNode::SK_NODE_DROPPED);
newRightNode->setAttribute(ContourNode::SK_NODE_DROPPED);
newLeftNode->m_outputNode = m_context->m_output->newNode(position);
newRightNode->m_outputNode = newLeftNode->m_outputNode;
m_context->newSkeletonLink(newLeftNode->m_outputNode, m_generator);
m_context->newSkeletonLink(newLeftNode->m_outputNode, m_coGenerator);
// Update the active Index Table
if (activeTable.m_identifiers[m_generator->m_ancestorContour] !=
activeTable.m_identifiers[m_coGenerator->m_ancestorContour]) {
// If we have two different contours, they merge in one
(*coGenContour)->clearAttribute(ContourNode::HEAD);
activeTable.merge(genContour, coGenContour);
// Check if the generator is head, if so update.
if (m_generator->hasAttribute(ContourNode::HEAD)) {
newLeftNode->setAttribute(ContourNode::HEAD);
*genContour = newLeftNode;
}
} else {
// Else we have only one contour, which splits in two
(*genContour)->clearAttribute(ContourNode::HEAD);
*genContour = newLeftNode;
newLeftNode->setAttribute(ContourNode::HEAD);
newRightNode->setAttribute(ContourNode::HEAD);
activeTable.columnOfId(m_generator->m_ancestorContour)
.push_back(newRightNode);
}
// Before calculating the new interactions, to each new node we assign
// as impossible opposite edges the adjacent of the other node.
if (newLeftNode->m_concave) {
newLeftNode->m_notOpposites = m_generator->m_notOpposites;
append<std::vector<ContourEdge *>,
std::vector<ContourEdge *>::reverse_iterator>(
newLeftNode->m_notOpposites, m_coGenerator->m_notOpposites);
newLeftNode->m_notOpposites.push_back(newRightNode->m_edge);
newLeftNode->m_notOpposites.push_back(newRightNode->m_prev->m_edge);
} else if (newRightNode->m_concave) {
newRightNode->m_notOpposites = m_generator->m_notOpposites;
append<std::vector<ContourEdge *>,
std::vector<ContourEdge *>::reverse_iterator>(
newRightNode->m_notOpposites, m_coGenerator->m_notOpposites);
newRightNode->m_notOpposites.push_back(newLeftNode->m_edge);
newRightNode->m_notOpposites.push_back(newLeftNode->m_prev->m_edge);
}
// We also forbid newRightNode to be involved in events at the same location
// of this one.
// We just push its position in the m_direction by 0.02.
newRightNode->m_position += 0.02 * newRightNode->m_direction;
// Finally, calculate the new left and right Events
Event newLeftEvent(newLeftNode, m_context);
if (newLeftEvent.m_type != Event::failure)
m_context->m_timeline.push(newLeftEvent);
Event newRightEvent(newRightNode, m_context);
if (newRightEvent.m_type != Event::failure)
m_context->m_timeline.push(newRightEvent);
}
//--------------------------------------------------------------------------
// EXPLANATION:
// x
// ---c a---
// \ /
// b = m_coGenerator
// Typical "V" event in which rays emitted from a, b and c collide.
// This events have to be recognized different from vertex events, and
// better treated as a whole event, rather than two simultaneous edge events.
inline void Event::processSpecialEvent() {
ContourNode *newNode;
T3DPointD position(m_generator->m_position +
m_displacement * m_generator->m_direction);
m_coGenerator->setAttribute(ContourNode::ELIMINATED);
m_coGenerator->m_prev->setAttribute(ContourNode::ELIMINATED);
m_coGenerator->m_next->setAttribute(ContourNode::ELIMINATED);
// Get and link newNode to the rest of this contour
newNode = m_context->getNode();
newNode->m_position = position;
m_coGenerator->m_prev->m_prev->m_next = newNode;
newNode->m_prev = m_coGenerator->m_prev->m_prev;
m_coGenerator->m_next->m_next->m_prev = newNode;
newNode->m_next = m_coGenerator->m_next->m_next;
// Then, initialize newNode infos
newNode->m_edge = m_coGenerator->m_next->m_edge;
newNode->m_ancestor = m_coGenerator->m_next->m_ancestor;
newNode->m_ancestorContour = m_coGenerator->m_next->m_ancestorContour;
// Neither this case can be forced convex
newNode->buildNodeInfos();
newNode->m_updateTime = m_context->m_algoritmicTime;
// Now build output
newNode->setAttribute(ContourNode::SK_NODE_DROPPED);
newNode->m_outputNode = m_context->m_output->newNode(position);
m_context->newSkeletonLink(newNode->m_outputNode, m_coGenerator->m_prev);
m_context->newSkeletonLink(newNode->m_outputNode, m_coGenerator);
m_context->newSkeletonLink(newNode->m_outputNode, m_coGenerator->m_next);
// If m_coGenerator or one of his adjacents is HEAD of this contour, then
// redefine newNode as the new head.
if (m_coGenerator->hasAttribute(ContourNode::HEAD) ||
m_coGenerator->m_next->hasAttribute(ContourNode::HEAD) ||
m_coGenerator->m_prev->hasAttribute(ContourNode::HEAD)) {
std::list<ContourNode *>::iterator it;
std::list<ContourNode *> &column =
m_context->m_activeTable.columnOfId(m_generator->m_ancestorContour);
for (it = column.begin(); !(*it)->hasAttribute(ContourNode::ELIMINATED);
++it)
;
// assert(*it == m_coGenerator || *it == m_coGenerator->m_next || *it ==
// m_coGenerator->m_prev);
*it = newNode, newNode->setAttribute(ContourNode::HEAD);
}
// Finally, calculate the Event raising by newNode
Event newEvent(newNode, m_context);
if (newEvent.m_type != Event::failure) m_context->m_timeline.push(newEvent);
}
//==========================================================================
//-------------------------------
// Straight Skeleton mains
//-------------------------------
static SkeletonGraph *skeletonize(ContourFamily ®ionContours,
VectorizationContext &context,
VectorizerCore *thisVectorizer) {
SkeletonGraph *output = context.m_output = new SkeletonGraph;
context.prepareContours(regionContours);
context.prepareGlobals();
IndexTable &activeTable = context.m_activeTable;
activeTable.build(regionContours);
double maxThickness = context.m_globals->currConfig->m_maxThickness;
if (maxThickness > 0.0) // if(!currConfig->m_outline)
{
Timeline &timeline = context.m_timeline;
timeline.build(regionContours, context, thisVectorizer);
#ifdef _SSDEBUG
SSDebugger debugger(context);
bool spawnDebugger = false;
if (timeline.size() > 1000) {
debugger.m_height = context.m_currentHeight;
debugger.show();
debugger.raise();
debugger.repaint();
debugger.loop();
spawnDebugger = true;
}
#endif
if (thisVectorizer->isCanceled()) {
// Bailing out
while (!timeline.empty()) timeline.pop();
context.m_nodesHeap.clear();
context.m_edgesHeap.clear();
context.m_linearNodesHeap.clear();
context.m_linearEdgesHeap.clear();
return output;
}
// Process timeline
while (!timeline.empty()) {
Event currentEvent = timeline.top();
timeline.pop();
// If maxThickness hit, stop before processing
if (currentEvent.m_height >= maxThickness) break;
// Redraw debugger window
#ifdef _SSDEBUG
if (spawnDebugger && debugger.isOnScreen(currentEvent.m_generator)) {
debugger.m_height = currentEvent.m_height;
debugger.repaint();
debugger.loop();
if (currentEvent.m_type == Event::split ||
currentEvent.m_type == Event::vertex)
currentEvent.tryRayEdgeCollisionWith(currentEvent.m_coGenerator);
if (currentEvent.m_type == Event::edge)
currentEvent.calculateEdgeEvent();
}
#endif // _SSDEBUG
// Process event
currentEvent.process();
context.m_currentHeight = currentEvent.m_height;
}
// The thinning process terminates: deleting non-original nodes and edges.
while (!timeline.empty()) timeline.pop();
#ifdef _SSDEBUG
if (spawnDebugger) {
debugger.m_height = context.m_currentHeight;
debugger.repaint();
debugger.loop();
}
#endif // _SSDEBUG
}
// Finally, update remaining nodes not processed due to maxThickness and
// connect them to output skeleton
unsigned int i, l, n;
IndexTable::IndexColumn::iterator j;
ContourNode *k;
for (i = 0; i < regionContours.size(); ++i)
for (j = activeTable[i]->begin(); j != activeTable[i]->end(); ++j) {
unsigned int count = 0;
unsigned int addedNode;
for (k = *j; !k->hasAttribute(ContourNode::HEAD) || !count;
k = k->m_next) {
addedNode = output->newNode(
k->m_position +
k->m_direction *
((maxThickness - k->m_position.z) /
(k->m_direction.z > 0.01 ? k->m_direction.z : 1)));
context.newSkeletonLink(addedNode, k);
// output->node(addedNode).setAttribute(ContourNode::SS_OUTLINE);
++count;
}
n = output->getNodesCount();
SkeletonArc arcCopy;
SkeletonArc arcCopyRev;
arcCopy.setAttribute(SkeletonArc::SS_OUTLINE);
arcCopyRev.setAttribute(SkeletonArc::SS_OUTLINE_REVERSED);
for (l = 1; l < count; ++l) {
output->newLink(n - l, n - l - 1, arcCopyRev);
output->newLink(n - l - 1, n - l, arcCopy);
}
output->newLink(n - l, n - 1, arcCopyRev);
output->newLink(n - 1, n - l, arcCopy);
}
context.m_nodesHeap.clear();
context.m_edgesHeap.clear();
context.m_linearNodesHeap.clear();
context.m_linearEdgesHeap.clear();
return output;
}
//--------------------------------------------------------------------------
SkeletonList *skeletonize(Contours &contours, VectorizerCore *thisVectorizer,
VectorizerCoreGlobals &g) {
VectorizationContext context(&g);
SkeletonList *res = new SkeletonList;
unsigned int i, j;
// Find overall number of nodes
unsigned int overallNodes = 0;
for (i = 0; i < contours.size(); ++i)
for (j = 0; j < contours[i].size(); ++j)
overallNodes += contours[i][j].size();
thisVectorizer->setOverallPartials(overallNodes);
for (i = 0; i < contours.size(); ++i) {
res->push_back(skeletonize(contours[i], context, thisVectorizer));
if (thisVectorizer->isCanceled()) break;
}
return res;
}
//--------------------------------------------------------------------------
//--------------
// DEBUG
//--------------
#ifdef _SSDEBUG
SSDebugger::SSDebugger(VectorizationContext &context)
: m_context(context)
, m_scale(1.0)
, m_loop(this)
, m_transform(1, 0, 0, -1, 0, height()) {
setMouseTracking(true);
}
//------------------------------------------------------
inline TPointD SSDebugger::updated(ContourNode *node) {
#ifndef _PREPROCESS
#ifdef _UPDATE
if (node->m_direction.z > 1e-4) {
return planeProjection(
node->m_position +
((m_height - node->m_position.z) / node->m_direction.z) *
node->m_direction);
} else
return planeProjection(node->m_position);
#endif
#endif
return planeProjection(node->m_position);
}
//------------------------------------------------------
#define line(a, b) p.drawLine(QLineF((a).x, (a).y, (b).x, (b).y));
//------------------------------------------------------
void SSDebugger::paintEvent(QPaintEvent *) {
QPainter p(this);
p.setTransform(m_transform);
// Draw currently produced skeleton
{
const SkeletonGraph &skeleton = *m_context.m_output;
p.setPen(Qt::blue);
int n, nCount = skeleton.getNodesCount();
for (n = 0; n != nCount; ++n) {
const SkeletonGraph::Node &node = skeleton.getNode(n);
int l, lCount = node.getLinksCount();
for (l = 0; l != lCount; ++l)
line(*node, *skeleton.getNode(node.getLink(l).getNext()));
}
}
// Draw background Debug Point
// Versione updated
IndexTable &activeTable = m_context.m_activeTable;
unsigned int i;
ContourNode *first, *last, *currNode;
std::list<ContourNode *>::iterator currentContour;
for (i = 0; i < activeTable.m_columns.size(); ++i) {
for (currentContour = activeTable[i]->begin();
currentContour != activeTable[i]->end(); currentContour++) {
// Draw edge
p.setPen(Qt::black);
last = first = *currentContour;
first = first->m_next;
// assert(!last->hasAttribute(ContourNode::ELIMINATED));
line(updated(last), updated(first));
for (currNode = first; !currNode->hasAttribute(ContourNode::HEAD);
currNode = currNode->m_next) {
// assert(!currNode->hasAttribute(ContourNode::ELIMINATED));
line(updated(currNode), updated(currNode->m_next));
}
// Draw bisector
p.setPen(Qt::red);
last = first = *currentContour;
first = first->m_next;
line(updated(last), updated(last) + planeProjection(last->m_direction));
for (currNode = first; !currNode->hasAttribute(ContourNode::HEAD);
currNode = currNode->m_next)
line(updated(currNode),
updated(currNode) + planeProjection(currNode->m_direction));
// Draw edge
p.setPen(Qt::green);
last = first = *currentContour;
first = first->m_next;
line(updated(last), updated(last) + last->m_edge->m_direction);
for (currNode = first; !currNode->hasAttribute(ContourNode::HEAD);
currNode = currNode->m_next)
line(updated(currNode),
updated(currNode) + currNode->m_edge->m_direction);
}
}
// Finally, draw text strings
{
p.setPen(Qt::red);
p.setTransform(QTransform());
const QPointF &worldPos = winToWorldF(m_pos.x(), m_pos.y());
p.drawText(rect().bottomLeft(), QString("WinPos: %1 %2 WorldPos: %3 %4")
.arg(m_pos.x())
.arg(m_pos.y())
.arg(worldPos.x())
.arg(worldPos.y()));
}
}
//------------------------------------------------------
void SSDebugger::keyPressEvent(QKeyEvent *event) { m_loop.exit(); }
//------------------------------------------------------
void SSDebugger::mouseMoveEvent(QMouseEvent *event) {
m_pos = event->pos();
if (event->buttons() == Qt::MiddleButton) {
m_transform.translate((event->x() - m_pressPos.x()) / m_scale,
(m_pressPos.y() - event->y()) / m_scale);
m_pressPos = event->pos();
}
update();
}
//------------------------------------------------------
void SSDebugger::mousePressEvent(QMouseEvent *event) {
m_pressPos = m_pos = event->pos();
}
//------------------------------------------------------
void SSDebugger::mouseReleaseEvent(QMouseEvent *event) {}
//------------------------------------------------------
QPoint SSDebugger::worldToWin(double x, double y) {
return m_transform.map(QPointF(x, y)).toPoint();
}
//------------------------------------------------------
QPoint SSDebugger::winToWorld(int x, int y) {
return m_transform.inverted().map(QPoint(x, y));
}
//------------------------------------------------------
QPointF SSDebugger::winToWorldF(int x, int y) {
return m_transform.inverted().map(QPointF(x, y));
}
//------------------------------------------------------
void SSDebugger::wheelEvent(QWheelEvent *event) {
QPoint w_coords;
double zoom_par = 1 + event->delta() * 0.001;
m_scale *= zoom_par;
w_coords = winToWorld(event->x(), event->y());
m_transform.translate(w_coords.x(), w_coords.y());
m_transform.scale(zoom_par, zoom_par);
m_transform.translate(-w_coords.x(), -w_coords.y());
update();
}
//------------------------------------------------------
inline bool SSDebugger::isOnScreen(ContourNode *node) {
const TPointD &pos = updated(node);
return rect().contains(worldToWin(pos.x, pos.y));
}
#endif