SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CGETRI computes the inverse of a matrix using the LU factorization
* computed by CGETRF.
*
* This method inverts U and then computes inv(A) by solving the system
* inv(A)*L = inv(U) for inv(A).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,N)
* On entry, the factors L and U from the factorization
* A = P*L*U as computed by CGETRF.
* On exit, if INFO = 0, the inverse of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimal performance LWORK >= N*NB, where NB is
* the optimal blocksize returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
* singular and its inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
$ ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
$ NBMIN, NN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CGEMV, CSWAP, CTRSM, CTRTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'CGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGETRI', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form inv(U). If INFO > 0 from CTRTRI, then U is singular,
* and the inverse is not computed.
*
CALL CTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = MAX( LDWORK*NB, 1 )
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'CGETRI', ' ', N, -1, -1, -1 ) )
END IF
ELSE
IWS = N
END IF
*
* Solve the equation inv(A)*L = inv(U) for inv(A).
*
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
DO 20 J = N, 1, -1
*
* Copy current column of L to WORK and replace with zeros.
*
DO 10 I = J + 1, N
WORK( I ) = A( I, J )
A( I, J ) = ZERO
10 CONTINUE
*
* Compute current column of inv(A).
*
IF( J.LT.N )
$ CALL CGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
20 CONTINUE
ELSE
*
* Use blocked code.
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 50 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
*
* Copy current block column of L to WORK and replace with
* zeros.
*
DO 40 JJ = J, J + JB - 1
DO 30 I = JJ + 1, N
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
A( I, JJ ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Compute current block column of inv(A).
*
IF( J+JB.LE.N )
$ CALL CGEMM( 'No transpose', 'No transpose', N, JB,
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
CALL CTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
50 CONTINUE
END IF
*
* Apply column interchanges.
*
DO 60 J = N - 1, 1, -1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL CSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
60 CONTINUE
*
WORK( 1 ) = IWS
RETURN
*
* End of CGETRI
*
END