/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#define ASSEMBLER
#include "common.h"
#define STACK 16
#define ARGS 32
#define J 0 + STACK(%esp)
#define I 4 + STACK(%esp)
#define KK 8 + STACK(%esp)
#define KKK 12 + STACK(%esp)
#define AORIG 16 + STACK(%esp)
#define M 4 + STACK + ARGS(%esp)
#define N 8 + STACK + ARGS(%esp)
#define K 12 + STACK + ARGS(%esp)
#define ALPHA 16 + STACK + ARGS(%esp)
#ifdef DOUBLE
#define STACK_A 24 + STACK + ARGS(%esp)
#define STACK_B 28 + STACK + ARGS(%esp)
#define C 32 + STACK + ARGS(%esp)
#define STACK_LDC 36 + STACK + ARGS(%esp)
#define OFFSET 40 + STACK + ARGS(%esp)
#else
#define STACK_A 20 + STACK + ARGS(%esp)
#define STACK_B 24 + STACK + ARGS(%esp)
#define C 28 + STACK + ARGS(%esp)
#define STACK_LDC 32 + STACK + ARGS(%esp)
#define OFFSET 36 + STACK + ARGS(%esp)
#endif
#define A %edx
#define B %ecx
#define B_ORIG %ebx
#define LDC %ebp
#define PREFETCHSIZE (5 + 8 * 10)
PROLOGUE
subl $ARGS, %esp # Generate Stack Frame
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx
PROFCODE
movl STACK_B, B_ORIG
movl STACK_LDC, LDC
leal (, LDC, SIZE), LDC
#ifdef LN
movl M, %eax
leal (, %eax, SIZE), %eax
addl %eax, C
imull K, %eax
addl %eax, STACK_A
#endif
#ifdef RT
movl N, %eax
leal (, %eax, SIZE), %eax
imull K, %eax
addl %eax, B_ORIG
movl N, %eax
imull LDC, %eax
addl %eax, C
#endif
#ifdef RN
movl OFFSET, %eax
negl %eax
movl %eax, KK
#endif
#ifdef RT
movl N, %eax
subl OFFSET, %eax
movl %eax, KK
#endif
subl $-16 * SIZE, B_ORIG
subl $-16 * SIZE, STACK_A
movl M, %eax
testl %eax, %eax
jle .L999
movl N, %eax
testl %eax, %eax
jle .L999
movl K, %eax
testl %eax, %eax
jle .L999
movl N, %eax
sarl $2, %eax
movl %eax, J
je .L20
ALIGN_3
.L11:
#if defined(LT) || defined(RN)
movl STACK_A, A
#else
movl STACK_A, %eax
movl %eax, AORIG
#endif
#ifdef RT
movl K, %eax
sall $2 + BASE_SHIFT, %eax
subl %eax, B_ORIG
#endif
leal (, LDC, 4), %eax
#ifdef RT
subl %eax, C
#endif
movl C, %edi
#ifndef RT
addl %eax, C
#endif
#ifdef LN
movl OFFSET, %eax
addl M, %eax
movl %eax, KK
#endif
#ifdef LT
movl OFFSET, %eax
movl %eax, KK
#endif
movl B_ORIG, B
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
sarl $4, %eax
jle .L13
ALIGN_4
.L12:
movl -16 * SIZE(B), %esi
movl -8 * SIZE(B), %esi
movl 0 * SIZE(B), %esi
movl 8 * SIZE(B), %esi
movl 16 * SIZE(B), %esi
movl 24 * SIZE(B), %esi
movl 32 * SIZE(B), %esi
movl 40 * SIZE(B), %esi
subl $-64 * SIZE, B
decl %eax
jne .L12
ALIGN_3
.L13:
movl M, %esi
movl %esi, I
ALIGN_3
.L14:
#ifdef LN
movl K, %eax
sall $BASE_SHIFT, %eax
subl %eax, AORIG
#endif
#if defined(LN) || defined(RT)
movl KK, %eax
leal (, %eax, SIZE), %eax
movl AORIG, A
leal (A , %eax, 1), A
leal (B_ORIG, %eax, 4), B
#else
movl B_ORIG, B
#endif
leal (%edi, LDC, 2), %eax
fldz
fldz
fldz
fldz
FLD -8 * SIZE(A)
FLD -16 * SIZE(A)
FLD -16 * SIZE(B)
movl $32 * SIZE, %esi
prefetchw 1 * SIZE(%edi)
prefetchw 1 * SIZE(%edi, LDC)
prefetchw 1 * SIZE(%eax)
prefetchw 1 * SIZE(%eax, LDC)
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
sarl $3, %eax
je .L16
ALIGN_3
.L15:
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -15 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -13 * SIZE(B)
faddp %st, %st(5)
FLD -15 * SIZE(A)
FLD -12 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -11 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -10 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -9 * SIZE(B)
faddp %st, %st(5)
FLD -14 * SIZE(A)
FLD -8 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -7 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -6 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -5 * SIZE(B)
faddp %st, %st(5)
FLD -13 * SIZE(A)
FLD -4 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD -3 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD -2 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL -1 * SIZE(B)
faddp %st, %st(5)
FLD -12 * SIZE(A)
FLD 0 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 1 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 2 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 3 * SIZE(B)
faddp %st, %st(5)
FLD -11 * SIZE(A)
FLD 4 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 5 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 6 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 7 * SIZE(B)
faddp %st, %st(5)
FLD -10 * SIZE(A)
FLD 8 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 9 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 10 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 11 * SIZE(B)
faddp %st, %st(5)
FLD -9 * SIZE(A)
FLD 12 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(3)
PADDING
FLD 13 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
PADDING
FLD 14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
PADDING
FMUL 15 * SIZE(B)
faddp %st, %st(5)
FLD 0 * SIZE(A)
PADDING prefetch PREFETCHSIZE * SIZE(A)
addl $8 * SIZE, A
fxch %st(1)
addl $32 * SIZE, B
FLD -16 * SIZE(B)
decl %eax
jne .L15
ALIGN_4
.L16:
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
and $7, %eax
je .L19
ALIGN_4
.L17:
fmul %st(1), %st
faddp %st, %st(3)
FLD -15 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FLD -14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(5)
FMUL -13 * SIZE(B)
faddp %st, %st(5)
FLD -15 * SIZE(A)
FLD -12 * SIZE(B)
addl $1 * SIZE,A
addl $4 * SIZE,B
decl %eax
jne .L17
ALIGN_4
.L19:
ffreep %st(0)
ffreep %st(0)
ffreep %st(0)
#if defined(LN) || defined(RT)
movl KK, %eax
#ifdef LN
subl $1, %eax
#else
subl $4, %eax
#endif
leal (, %eax, SIZE), %eax
movl AORIG, A
leal (A, %eax, 1), A
leal (B_ORIG, %eax, 4), B
#endif
#if defined(LN) || defined(LT)
FLD 0 * SIZE - 16 * SIZE(B)
fsubp %st, %st(1)
FLD 1 * SIZE - 16 * SIZE(B)
fsubp %st, %st(2)
FLD 2 * SIZE - 16 * SIZE(B)
fsubp %st, %st(3)
FLD 3 * SIZE - 16 * SIZE(B)
fsubp %st, %st(4)
#else
FLD 0 * SIZE - 16 * SIZE(A)
fsubp %st, %st(1)
FLD 1 * SIZE - 16 * SIZE(A)
fsubp %st, %st(2)
FLD 2 * SIZE - 16 * SIZE(A)
fsubp %st, %st(3)
FLD 3 * SIZE - 16 * SIZE(A)
fsubp %st, %st(4)
#endif
#ifdef LN
FLD 0 * SIZE - 16 * SIZE(A)
fmul %st, %st(1)
fmul %st, %st(2)
fmul %st, %st(3)
fmulp %st, %st(4)
#endif
#ifdef LT
FLD 0 * SIZE - 16 * SIZE(A)
fmul %st, %st(1)
fmul %st, %st(2)
fmul %st, %st(3)
fmulp %st, %st(4)
#endif
#ifdef RN
FMUL 0 * SIZE - 16 * SIZE(B)
FLD 1 * SIZE - 16 * SIZE(B)
fmul %st(1), %st
fsubrp %st, %st(2)
FLD 2 * SIZE - 16 * SIZE(B)
fmul %st(1), %st
fsubrp %st, %st(3)
FLD 3 * SIZE - 16 * SIZE(B)
fmul %st(1), %st
fsubrp %st, %st(4)
FLD 5 * SIZE - 16 * SIZE(B)
fmulp %st, %st(2)
FLD 6 * SIZE - 16 * SIZE(B)
fmul %st(2), %st
fsubrp %st, %st(3)
FLD 7 * SIZE - 16 * SIZE(B)
fmul %st(2), %st
fsubrp %st, %st(4)
FLD 10 * SIZE - 16 * SIZE(B)
fmulp %st, %st(3)
FLD 11 * SIZE - 16 * SIZE(B)
fmul %st(3), %st
fsubrp %st, %st(4)
FLD 15 * SIZE - 16 * SIZE(B)
fmulp %st, %st(4)
#endif
#ifdef RT
FLD 15 * SIZE - 16 * SIZE(B)
fmulp %st, %st(4)
FLD 14 * SIZE - 16 * SIZE(B)
fmul %st(4), %st
fsubrp %st, %st(3)
FLD 13 * SIZE - 16 * SIZE(B)
fmul %st(4), %st
fsubrp %st, %st(2)
FLD 12 * SIZE - 16 * SIZE(B)
fmul %st(4), %st
fsubrp %st, %st(1)
FLD 10 * SIZE - 16 * SIZE(B)
fmulp %st, %st(3)
FLD 9 * SIZE - 16 * SIZE(B)
fmul %st(3), %st
fsubrp %st, %st(2)
FLD 8 * SIZE - 16 * SIZE(B)
fmul %st(3), %st
fsubrp %st, %st(1)
FLD 5 * SIZE - 16 * SIZE(B)
fmulp %st, %st(2)
FLD 4 * SIZE - 16 * SIZE(B)
fmul %st(2), %st
fsubrp %st, %st(1)
FLD 0 * SIZE - 16 * SIZE(B)
fmulp %st, %st(1)
#endif
#ifdef LN
subl $1 * SIZE, %edi
#endif
#if defined(LN) || defined(LT)
FSTU 0 * SIZE - 16 * SIZE(B)
fxch %st(1)
FSTU 1 * SIZE - 16 * SIZE(B)
fxch %st(2)
FSTU 2 * SIZE - 16 * SIZE(B)
fxch %st(3)
FSTU 3 * SIZE - 16 * SIZE(B)
#else
FSTU 0 * SIZE - 16 * SIZE(A)
fxch %st(1)
FSTU 1 * SIZE - 16 * SIZE(A)
fxch %st(2)
FSTU 2 * SIZE - 16 * SIZE(A)
fxch %st(3)
FSTU 3 * SIZE - 16 * SIZE(A)
#endif
leal (%edi, LDC, 2), %eax
FST 0 * SIZE(%eax, LDC)
FST 0 * SIZE(%edi)
FST 0 * SIZE(%edi, LDC)
FST 0 * SIZE(%eax)
#ifndef LN
addl $1 * SIZE, %edi
#endif
#if defined(LT) || defined(RN)
movl K, %eax
subl KK, %eax
leal (,%eax, SIZE), %eax
leal (A, %eax, 1), A
leal (B, %eax, 4), B
#endif
#ifdef LN
subl $1, KK
#endif
#ifdef LT
addl $1, KK
#endif
#ifdef RT
movl K, %eax
sall $BASE_SHIFT, %eax
addl %eax, AORIG
#endif
decl I
jne .L14
#ifdef LN
movl K, %eax
leal ( , %eax, SIZE), %eax
leal (B_ORIG, %eax, 4), B_ORIG
#endif
#if defined(LT) || defined(RN)
movl B, B_ORIG
#endif
#ifdef RN
addl $4, KK
#endif
#ifdef RT
subl $4, KK
#endif
decl J
jne .L11
ALIGN_4
.L20:
movl N, %eax
andl $2, %eax
je .L30
#if defined(LT) || defined(RN)
movl STACK_A, A
#else
movl STACK_A, %eax
movl %eax, AORIG
#endif
#ifdef RT
movl K, %eax
sall $1 + BASE_SHIFT, %eax
subl %eax, B_ORIG
#endif
leal (, LDC, 2), %eax
#ifdef RT
subl %eax, C
#endif
movl C, %edi
#ifndef RT
addl %eax, C
#endif
#ifdef LN
movl OFFSET, %eax
addl M, %eax
movl %eax, KK
#endif
#ifdef LT
movl OFFSET, %eax
movl %eax, KK
#endif
movl B_ORIG, B
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
sarl $4, %eax
jle .L23
ALIGN_4
.L22:
movl -16 * SIZE(B), %esi
movl -8 * SIZE(B), %esi
movl 0 * SIZE(B), %esi
movl 8 * SIZE(B), %esi
subl $-32 * SIZE, B
decl %eax
jne .L22
ALIGN_3
.L23:
movl M, %esi
movl %esi, I
ALIGN_3
.L24:
#ifdef LN
movl K, %eax
sall $BASE_SHIFT, %eax
subl %eax, AORIG
#endif
#if defined(LN) || defined(RT)
movl KK, %eax
leal (, %eax, SIZE), %eax
movl AORIG, A
leal (A , %eax, 1), A
leal (B_ORIG, %eax, 2), B
#else
movl B_ORIG, B
#endif
fldz
fldz
fldz
fldz
FLD -16 * SIZE(A)
FLD -16 * SIZE(B)
prefetchw 1 * SIZE(%edi)
prefetchw 1 * SIZE(%edi, LDC)
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
sarl $3, %eax
je .L26
ALIGN_3
.L25:
fmul %st(1), %st
faddp %st, %st(2)
FMUL -15 * SIZE(B)
faddp %st, %st(2)
FLD -15 * SIZE(A)
FLD -14 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -13 * SIZE(B)
faddp %st, %st(4)
FLD -14 * SIZE(A)
FLD -12 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(2)
FMUL -11 * SIZE(B)
faddp %st, %st(2)
FLD -13 * SIZE(A)
FLD -10 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -9 * SIZE(B)
faddp %st, %st(4)
FLD -12 * SIZE(A)
FLD -8 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(2)
FMUL -7 * SIZE(B)
faddp %st, %st(2)
FLD -11 * SIZE(A)
FLD -6 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -5 * SIZE(B)
faddp %st, %st(4)
FLD -10 * SIZE(A)
FLD -4 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(2)
FMUL -3 * SIZE(B)
faddp %st, %st(2)
FLD -9 * SIZE(A)
FLD -2 * SIZE(B)
fmul %st(1), %st
faddp %st, %st(4)
FMUL -1 * SIZE(B)
faddp %st, %st(4)
FLD -8 * SIZE(A)
FLD 0 * SIZE(B)
addl $ 8 * SIZE, A
subl $-16 * SIZE, B
decl %eax
jne .L25
ALIGN_4
.L26:
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
and $7, %eax
je .L29
ALIGN_4
.L27:
fmul %st(1), %st
faddp %st, %st(2)
FMUL -15 * SIZE(B)
faddp %st, %st(2)
FLD -15 * SIZE(A)
FLD -14 * SIZE(B)
addl $1 * SIZE,A
addl $2 * SIZE,B
decl %eax
jne .L27
ALIGN_4
.L29:
ffreep %st(0)
ffreep %st(0)
faddp %st, %st(2)
faddp %st, %st(2)
#if defined(LN) || defined(RT)
movl KK, %eax
#ifdef LN
subl $1, %eax
#else
subl $2, %eax
#endif
leal (, %eax, SIZE), %eax
movl AORIG, A
leal (A, %eax, 1), A
leal (B_ORIG, %eax, 2), B
#endif
#if defined(LN) || defined(LT)
FLD 0 * SIZE - 16 * SIZE(B)
fsubp %st, %st(1)
FLD 1 * SIZE - 16 * SIZE(B)
fsubp %st, %st(2)
#else
FLD 0 * SIZE - 16 * SIZE(A)
fsubp %st, %st(1)
FLD 1 * SIZE - 16 * SIZE(A)
fsubp %st, %st(2)
#endif
#ifdef LN
FLD 0 * SIZE - 16 * SIZE(A)
fmul %st, %st(1)
fmulp %st, %st(2)
#endif
#ifdef LT
FLD 0 * SIZE - 16 * SIZE(A)
fmul %st, %st(1)
fmulp %st, %st(2)
#endif
#ifdef RN
FMUL 0 * SIZE - 16 * SIZE(B)
FLD 1 * SIZE - 16 * SIZE(B)
fmul %st(1), %st
fsubrp %st, %st(2)
FLD 3 * SIZE - 16 * SIZE(B)
fmulp %st, %st(2)
#endif
#ifdef RT
FLD 3 * SIZE - 16 * SIZE(B)
fmulp %st, %st(2)
FLD 2 * SIZE - 16 * SIZE(B)
fmul %st(2), %st
fsubrp %st, %st(1)
FLD 0 * SIZE - 16 * SIZE(B)
fmulp %st, %st(1)
#endif
#ifdef LN
subl $1 * SIZE, %edi
#endif
#if defined(LN) || defined(LT)
FSTU 0 * SIZE - 16 * SIZE(B)
fxch %st(1)
FSTU 1 * SIZE - 16 * SIZE(B)
#else
FSTU 0 * SIZE - 16 * SIZE(A)
fxch %st(1)
FSTU 1 * SIZE - 16 * SIZE(A)
#endif
FST 0 * SIZE(%edi, LDC)
FST 0 * SIZE(%edi)
#ifndef LN
addl $1 * SIZE, %edi
#endif
#if defined(LT) || defined(RN)
movl K, %eax
subl KK, %eax
leal (,%eax, SIZE), %eax
leal (A, %eax, 1), A
leal (B, %eax, 2), B
#endif
#ifdef LN
subl $1, KK
#endif
#ifdef LT
addl $1, KK
#endif
#ifdef RT
movl K, %eax
sall $BASE_SHIFT, %eax
addl %eax, AORIG
#endif
decl I
jne .L24
#ifdef LN
movl K, %eax
leal ( , %eax, SIZE), %eax
leal (B_ORIG, %eax, 2), B_ORIG
#endif
#if defined(LT) || defined(RN)
movl B, B_ORIG
#endif
#ifdef RN
addl $2, KK
#endif
#ifdef RT
subl $2, KK
#endif
ALIGN_4
.L30:
movl N, %eax
andl $1, %eax
je .L999
ALIGN_3
.L31:
#if defined(LT) || defined(RN)
movl STACK_A, A
#else
movl STACK_A, %eax
movl %eax, AORIG
#endif
#ifdef RT
movl K, %eax
sall $0 + BASE_SHIFT, %eax
subl %eax, B_ORIG
#endif
#ifdef RT
subl LDC, C
#endif
movl C, %edi
#ifndef RT
addl LDC, C
#endif
#ifdef LN
movl OFFSET, %eax
addl M, %eax
movl %eax, KK
#endif
#ifdef LT
movl OFFSET, %eax
movl %eax, KK
#endif
movl B_ORIG, B
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
sarl $5, %eax
jle .L33
ALIGN_4
.L32:
movl -16 * SIZE(B), %esi
movl -8 * SIZE(B), %esi
movl 0 * SIZE(B), %esi
movl 8 * SIZE(B), %esi
subl $-32 * SIZE, B
decl %eax
jne .L32
ALIGN_3
.L33:
movl M, %esi
movl %esi, I
ALIGN_3
.L34:
#ifdef LN
movl K, %eax
sall $BASE_SHIFT, %eax
subl %eax, AORIG
#endif
#if defined(LN) || defined(RT)
movl KK, %eax
leal (, %eax, SIZE), %eax
movl AORIG, A
leal (A , %eax, 1), A
leal (B_ORIG, %eax, 1), B
#else
movl B_ORIG, B
#endif
fldz
fldz
fldz
fldz
prefetchw 1 * SIZE(%edi)
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
sarl $3, %eax
je .L36
ALIGN_3
.L35:
FLD -16 * SIZE(A)
FMUL -16 * SIZE(B)
faddp %st, %st(1)
FLD -15 * SIZE(A)
FMUL -15 * SIZE(B)
faddp %st, %st(2)
FLD -14 * SIZE(A)
FMUL -14 * SIZE(B)
faddp %st, %st(3)
FLD -13 * SIZE(A)
FMUL -13 * SIZE(B)
faddp %st, %st(4)
FLD -12 * SIZE(A)
FMUL -12 * SIZE(B)
faddp %st, %st(1)
FLD -11 * SIZE(A)
FMUL -11 * SIZE(B)
faddp %st, %st(2)
FLD -10 * SIZE(A)
FMUL -10 * SIZE(B)
faddp %st, %st(3)
FLD -9 * SIZE(A)
FMUL -9 * SIZE(B)
faddp %st, %st(4)
addl $8 * SIZE, A
addl $8 * SIZE, B
decl %eax
jne .L35
ALIGN_4
.L36:
#if defined(LT) || defined(RN)
movl KK, %eax
#else
movl K, %eax
subl KK, %eax
#endif
and $7, %eax
je .L39
ALIGN_4
.L37:
FLD -16 * SIZE(A)
FMUL -16 * SIZE(B)
faddp %st, %st(1)
addl $1 * SIZE,A
addl $1 * SIZE,B
decl %eax
jne .L37
ALIGN_4
.L39:
faddp %st, %st(2)
faddp %st, %st(2)
faddp %st, %st(1)
#if defined(LN) || defined(RT)
movl KK, %eax
subl $1, %eax
movl AORIG, A
leal (A, %eax, SIZE), A
leal (B_ORIG, %eax, SIZE), B
#endif
#if defined(LN) || defined(LT)
FLD 0 * SIZE - 16 * SIZE(B)
fsubp %st, %st(1)
#else
FLD 0 * SIZE - 16 * SIZE(A)
fsubp %st, %st(1)
#endif
#if defined(LN) || defined(LT)
FLD 0 * SIZE - 16 * SIZE(A)
fmulp %st, %st(1)
#endif
#if defined(RN) || defined(RT)
FMUL 0 * SIZE - 16 * SIZE(B)
#endif
#ifdef LN
subl $1 * SIZE, %edi
#endif
#if defined(LN) || defined(LT)
FSTU 0 * SIZE - 16 * SIZE(B)
#else
FSTU 0 * SIZE - 16 * SIZE(A)
#endif
FST 0 * SIZE(%edi)
#ifndef LN
addl $1 * SIZE, %edi
#endif
#if defined(LT) || defined(RN)
movl K, %eax
subl KK, %eax
leal (A, %eax, SIZE), A
leal (B, %eax, SIZE), B
#endif
#ifdef LN
subl $1, KK
#endif
#ifdef LT
addl $1, KK
#endif
#ifdef RT
movl K, %eax
sall $BASE_SHIFT, %eax
addl %eax, AORIG
#endif
decl I
jne .L34
#ifdef LN
movl K, %eax
leal ( , %eax, SIZE), %eax
leal (B_ORIG, %eax, 1), B_ORIG
#endif
#if defined(LT) || defined(RN)
movl B, B_ORIG
#endif
#ifdef RN
addl $1, KK
#endif
#ifdef RT
subl $1, KK
#endif
ALIGN_4
.L999:
popl %ebx
popl %esi
popl %edi
popl %ebp
addl $ARGS, %esp
ret
EPILOGUE