SUBROUTINE CSBMVF(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INCX, INCY, K, LDA, N
COMPLEX ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* CSBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric band matrix, with k super-diagonals.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1
* On entry, UPLO specifies whether the upper or lower
* triangular part of the band matrix A is being supplied as
* follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* being supplied.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* being supplied.
*
* Unchanged on exit.
*
* N - INTEGER
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* K - INTEGER
* On entry, K specifies the number of super-diagonals of the
* matrix A. K must satisfy 0 .le. K.
* Unchanged on exit.
*
* ALPHA - COMPLEX
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX array, dimension( LDA, N )
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
* by n part of the array A must contain the upper triangular
* band part of the symmetric matrix, supplied column by
* column, with the leading diagonal of the matrix in row
* ( k + 1 ) of the array, the first super-diagonal starting at
* position 2 in row k, and so on. The top left k by k triangle
* of the array A is not referenced.
* The following program segment will transfer the upper
* triangular part of a symmetric band matrix from conventional
* full matrix storage to band storage:
*
* DO 20, J = 1, N
* M = K + 1 - J
* DO 10, I = MAX( 1, J - K ), J
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
* by n part of the array A must contain the lower triangular
* band part of the symmetric matrix, supplied column by
* column, with the leading diagonal of the matrix in row 1 of
* the array, the first sub-diagonal starting at position 1 in
* row 2, and so on. The bottom right k by k triangle of the
* array A is not referenced.
* The following program segment will transfer the lower
* triangular part of a symmetric band matrix from conventional
* full matrix storage to band storage:
*
* DO 20, J = 1, N
* M = 1 - J
* DO 10, I = J, MIN( N, J + K )
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( k + 1 ).
* Unchanged on exit.
*
* X - COMPLEX array, dimension at least
* ( 1 + ( N - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - COMPLEX
* On entry, BETA specifies the scalar beta.
* Unchanged on exit.
*
* Y - COMPLEX array, dimension at least
* ( 1 + ( N - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
* INCY - INTEGER
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
COMPLEX TEMP1, TEMP2
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = 1
ELSE IF( N.LT.0 ) THEN
INFO = 2
ELSE IF( K.LT.0 ) THEN
INFO = 3
ELSE IF( LDA.LT.( K+1 ) ) THEN
INFO = 6
ELSE IF( INCX.EQ.0 ) THEN
INFO = 8
ELSE IF( INCY.EQ.0 ) THEN
INFO = 11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CSBMV ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
$ RETURN
*
* Set up the start points in X and Y.
*
IF( INCX.GT.0 ) THEN
KX = 1
ELSE
KX = 1 - ( N-1 )*INCX
END IF
IF( INCY.GT.0 ) THEN
KY = 1
ELSE
KY = 1 - ( N-1 )*INCY
END IF
*
* Start the operations. In this version the elements of the array A
* are accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF( BETA.NE.ONE ) THEN
IF( INCY.EQ.1 ) THEN
IF( BETA.EQ.ZERO ) THEN
DO 10 I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1, N
Y( I ) = BETA*Y( I )
20 CONTINUE
END IF
ELSE
IY = KY
IF( BETA.EQ.ZERO ) THEN
DO 30 I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1, N
Y( IY ) = BETA*Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF( ALPHA.EQ.ZERO )
$ RETURN
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Form y when upper triangle of A is stored.
*
KPLUS1 = K + 1
IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
DO 60 J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
L = KPLUS1 - J
DO 50 I = MAX( 1, J-K ), J - 1
Y( I ) = Y( I ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( I )
50 CONTINUE
Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80 J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
IX = KX
IY = KY
L = KPLUS1 - J
DO 70 I = MAX( 1, J-K ), J - 1
Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( IX )
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
IF( J.GT.K ) THEN
KX = KX + INCX
KY = KY + INCY
END IF
80 CONTINUE
END IF
ELSE
*
* Form y when lower triangle of A is stored.
*
IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
DO 100 J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
Y( J ) = Y( J ) + TEMP1*A( 1, J )
L = 1 - J
DO 90 I = J + 1, MIN( N, J+K )
Y( I ) = Y( I ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( I )
90 CONTINUE
Y( J ) = Y( J ) + ALPHA*TEMP2
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120 J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
L = 1 - J
IX = JX
IY = JY
DO 110 I = J + 1, MIN( N, J+K )
IX = IX + INCX
IY = IY + INCY
Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( IX )
110 CONTINUE
Y( JY ) = Y( JY ) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of CSBMV
*
END