SUBROUTINE CSYRF( UPLO, N, ALPHA, X, INCX, A, LDA )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INCX, LDA, N
COMPLEX ALPHA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), X( * )
* ..
*
* Purpose
* =======
*
* CSYR performs the symmetric rank 1 operation
*
* A := alpha*x*( x' ) + A,
*
* where alpha is a complex scalar, x is an n element vector and A is an
* n by n symmetric matrix.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array A is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of A
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of A
* is to be referenced.
*
* Unchanged on exit.
*
* N (input) INTEGER
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA (input) COMPLEX
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X (input) COMPLEX array, dimension at least
* ( 1 + ( N - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the N-
* element vector x.
* Unchanged on exit.
*
* INCX (input) INTEGER
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* A (input/output) COMPLEX array, dimension ( LDA, N )
* Before entry, with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular part of the symmetric matrix and the strictly
* lower triangular part of A is not referenced. On exit, the
* upper triangular part of the array A is overwritten by the
* upper triangular part of the updated matrix.
* Before entry, with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular part of the symmetric matrix and the strictly
* upper triangular part of A is not referenced. On exit, the
* lower triangular part of the array A is overwritten by the
* lower triangular part of the updated matrix.
*
* LDA (input) INTEGER
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, N ).
* Unchanged on exit.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, IX, J, JX, KX
COMPLEX TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = 1
ELSE IF( N.LT.0 ) THEN
INFO = 2
ELSE IF( INCX.EQ.0 ) THEN
INFO = 5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = 7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CSYR ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
$ RETURN
*
* Set the start point in X if the increment is not unity.
*
IF( INCX.LE.0 ) THEN
KX = 1 - ( N-1 )*INCX
ELSE IF( INCX.NE.1 ) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Form A when A is stored in upper triangle.
*
IF( INCX.EQ.1 ) THEN
DO 20 J = 1, N
IF( X( J ).NE.ZERO ) THEN
TEMP = ALPHA*X( J )
DO 10 I = 1, J
A( I, J ) = A( I, J ) + X( I )*TEMP
10 CONTINUE
END IF
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1, N
IF( X( JX ).NE.ZERO ) THEN
TEMP = ALPHA*X( JX )
IX = KX
DO 30 I = 1, J
A( I, J ) = A( I, J ) + X( IX )*TEMP
IX = IX + INCX
30 CONTINUE
END IF
JX = JX + INCX
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in lower triangle.
*
IF( INCX.EQ.1 ) THEN
DO 60 J = 1, N
IF( X( J ).NE.ZERO ) THEN
TEMP = ALPHA*X( J )
DO 50 I = J, N
A( I, J ) = A( I, J ) + X( I )*TEMP
50 CONTINUE
END IF
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1, N
IF( X( JX ).NE.ZERO ) THEN
TEMP = ALPHA*X( JX )
IX = JX
DO 70 I = J, N
A( I, J ) = A( I, J ) + X( IX )*TEMP
IX = IX + INCX
70 CONTINUE
END IF
JX = JX + INCX
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CSYR
*
END