Blob Blame Raw


#include "warp.h"
#include "toonz/tdistort.h"
#include "timage_io.h" //For debug use only

//-------------------------------------------------------------------

namespace
{

//Local inlines

template <typename T>
inline double convert(const T &pixel);

template <>
inline double convert<TPixel32>(const TPixel32 &pixel)
{
	return TPixelGR8::from(pixel).value;
}

template <>
inline double convert<TPixel64>(const TPixel64 &pixel)
{
	return TPixelGR16::from(pixel).value;
}
}

/*-----------------------------------------------------------------*/

template <typename T>
class Warper : public TDistorter
{
public:
	TRasterPT<T> m_rin;
	TRasterPT<T> m_warper;
	TRasterPT<T> m_rout;
	TPointD m_rinPos;
	TPointD m_warperPos;
	TDimension m_oriDim;
	int m_shrink;
	double m_warperScale;
	double m_intensity;
	bool m_sharpen;
	Lattice m_lattice;

	Warper(TPointD rinPos, TPointD warperPos,
		   const TRasterPT<T> &rin, const TRasterPT<T> &warper, TRasterPT<T> &rout, const WarpParams &params)
		: m_rinPos(rinPos), m_warperPos(warperPos), m_rin(rin), m_warper(warper), m_rout(rout), m_intensity(1.5 * 1.5 * params.m_intensity / 100), m_shrink(params.m_shrink), m_warperScale(params.m_warperScale), m_oriDim(rin->getSize()), m_sharpen(params.m_sharpen)
	{
	}

	~Warper() {}

	void createLattice();
	void shepardWarp();
	TPointD map(const TPointD &p) const;
	int invMap(const TPointD &p, TPointD *invs) const;
	int maxInvCount() const { return 1; }
};

/*---------------------------------------------------------------------------*/

template <typename T>
void Warper<T>::createLattice()
{
	int ori_lx, ori_ly, i, j, lx, ly, incr;
	double fac;

	ori_lx = m_shrink * (m_warper->getLx() - 1) + 1;
	ori_ly = m_shrink * (m_warper->getLy() - 1) + 1;

	lx = m_lattice.m_width = ori_lx;
	ly = m_lattice.m_height = ori_ly;

	TRasterPT<T> aux = m_warper;

	if (!m_sharpen)
		TRop::blur(aux, aux, 6.0, 0, 0);

	m_lattice.coords = new LPoint[lx * ly];

	LPoint *coord = m_lattice.coords;

	for (j = 0; j < ly; ++j) {
		if (j >= ly - 1)
			j = ori_ly - 1;
		coord->s.y = (coord + lx - 1)->s.y = 0;
		coord->d.y = (coord + lx - 1)->d.y = j;

		(coord + lx - 1)->s.x = 0;
		(coord + lx - 1)->d.x = ori_lx - 1;
		coord += lx;
	}

	coord = m_lattice.coords;
	incr = (ly - 1) * lx;

	for (i = 0; i < lx; ++i) {
		if (i >= (lx - 1))
			i = ori_lx - 1;
		coord->s.x = (coord + incr)->s.x = 0;
		coord->d.x = (coord + incr)->d.x = i;
		(coord + incr)->s.y = 0;
		(coord + incr)->d.y = ori_ly - 1;
		coord++;
	}

	fac = m_intensity * (TPixel32::maxChannelValue / (double)T::maxChannelValue);
	aux->lock();
	T *buffer = (T *)aux->getRawData();
	T *pixIn;
	int auxWrap = aux->getWrap();

	for (j = 1; j < ly - 1; j++) {
		pixIn = buffer + j * auxWrap;
		coord = &(m_lattice.coords[j * lx]);

		for (i = 1; i < lx - 1; i++) {
			++pixIn;
			++coord;
			coord->d.x = i;
			coord->d.y = j;

			//FOR A FUTURE RELEASE: We should not make the diffs below between +1 and -1, BUT 0 and -1!!

			coord->s.x = fac * (convert(*(pixIn + 1)) - convert(*(pixIn - 1)));
			coord->s.y = fac * (convert(*(pixIn + auxWrap)) - convert(*(pixIn - auxWrap)));
		}
	}

	aux->unlock();

	//Finally, we scale the lattice according to the m_scale parameter.
	coord = m_lattice.coords;
	int wh = m_lattice.m_width * m_lattice.m_height;
	for (i = 0; i < wh; ++i, ++coord) {
		coord->d = m_warperPos + m_warperScale * coord->d;
		coord->s = m_warperScale * coord->s;
	}
}

//---------------------------------------------------------------------------

template <typename T>
void Warper<T>::shepardWarp()
{
	assert(m_rin.getPointer() != m_rout.getPointer());

	m_rin->lock();
	m_rout->lock();

	TRasterP rasIn(m_rin);
	TRasterP rasOut(m_rout);
	distort(rasOut, rasIn, *this, -convert(m_rinPos), TRop::Bilinear);

	m_rout->unlock();
	m_rin->unlock();
}

//---------------------------------------------------------------------------

template <typename T>
TPointD Warper<T>::map(const TPointD &p) const
{
	return TPointD(); //Not truly necessary
}

//---------------------------------------------------------------------------

template <typename T>
int Warper<T>::invMap(const TPointD &p, TPointD *invs) const
{
	//Make a Shepard interpolant of grid points
	const double maxDist = 2 * m_warperScale;

	TPointD pos(p + m_rinPos);

	//First, bisect for the interesting maxDist-from-p region
	int i, j;
	double xStart = pos.x - maxDist;
	double yStart = pos.y - maxDist;
	double xEnd = pos.x + maxDist;
	double yEnd = pos.y + maxDist;

	int a = 0, b = m_lattice.m_width;
	while (a + 1 < b) {
		i = (a + b) / 2;
		if (m_lattice.coords[i].d.x < xStart)
			a = i;
		else
			b = i;
	}
	i = a;

	a = 0, b = m_lattice.m_height;
	while (a + 1 < b) {
		j = (a + b) / 2;
		if (m_lattice.coords[j * m_lattice.m_width].d.y < yStart)
			a = j;
		else
			b = j;
	}
	j = a;

	//Then, build the interpolation
	int u, v;
	double w, wsum = 0;
	double xDistSq, yDistSq;
	double distSq, maxDistSq = sq(maxDist);
	TPointD result;

	for (v = j; v < m_lattice.m_height; ++v) {
		int vidx = v * m_lattice.m_width;
		if (m_lattice.coords[vidx].d.y > yEnd)
			break;

		yDistSq = sq(pos.y - m_lattice.coords[vidx].d.y);

		LPoint *coord = &m_lattice.coords[vidx + i];
		for (u = i; u < m_lattice.m_width; ++u, ++coord) {
			xDistSq = sq(pos.x - m_lattice.coords[u].d.x);
			if (m_lattice.coords[u].d.x > xEnd)
				break;

			distSq = xDistSq + yDistSq;
			if (distSq > maxDistSq)
				continue;

			w = maxDist - sqrt(distSq);
			wsum += w;
			result += w * coord->s;
		}
	}

	if (wsum)
		invs[0] = p + TPointD(result.x / wsum, result.y / wsum);
	else
		invs[0] = p;

	return 1;
}

//---------------------------------------------------------------------------

//!Calculates the geometry we need for this node computation, given
//!the known warped bbox, the requested rect, and the warp params.
void getWarpComputeRects(
	TRectD &outputComputeRect,
	TRectD &warpedComputeRect,
	const TRectD &warpedBox,
	const TRectD &requestedRect,
	const WarpParams &params)
{
	if (requestedRect.isEmpty() || warpedBox.isEmpty()) {
		warpedComputeRect.empty();
		outputComputeRect.empty();
		return;
	}

	//We are to find out the geometry that is useful for the fx computation.
	//There are some rules to follow:
	//  0) At this stage, we are definitely not aware of what lies in the warper
	//     image. Therefore, we must assume the maximum warp factor allowed by the
	//     warp params for each of its points - see getWarpRadius().
	//  2) Pixels contributing to any output are necessarily part of warpedBox - and only
	//     those which are warpable into the requestedRect are useful to us
	//     (i.e. pixels contained in its enlargement by the warp radius).

	double warpRadius = getWarpRadius(params) * params.m_warperScale;
	TRectD enlargedOut(requestedRect.enlarge(warpRadius));
	TRectD enlargedBox(warpedBox.enlarge(warpRadius));

	warpedComputeRect = enlargedOut * warpedBox;
	outputComputeRect = enlargedBox * requestedRect;

	//Finally, make sure that the result is coherent with the requestedRect's P00
	warpedComputeRect -= requestedRect.getP00();
	warpedComputeRect.x0 = tfloor(warpedComputeRect.x0);
	warpedComputeRect.y0 = tfloor(warpedComputeRect.y0);
	warpedComputeRect.x1 = tceil(warpedComputeRect.x1);
	warpedComputeRect.y1 = tceil(warpedComputeRect.y1);
	warpedComputeRect += requestedRect.getP00();

	outputComputeRect -= requestedRect.getP00();
	outputComputeRect.x0 = tfloor(outputComputeRect.x0);
	outputComputeRect.y0 = tfloor(outputComputeRect.y0);
	outputComputeRect.x1 = tceil(outputComputeRect.x1);
	outputComputeRect.y1 = tceil(outputComputeRect.y1);
	outputComputeRect += requestedRect.getP00();
}

//---------------------------------------------------------------------------

//!Deals with raster tiles and invokes warper functions.
//!\b NOTE: \b tileRas's size should be \b warper's one multiplied by params.m_scale.
void warp(TRasterP &tileRas, const TRasterP &rasIn, TRasterP &warper,
		  TPointD rasInPos, TPointD warperPos, const WarpParams &params)
{

	TRaster32P rasIn32 = rasIn;
	TRaster32P tileRas32 = tileRas;
	TRaster32P warper32 = warper;
	TRaster64P rasIn64 = rasIn;
	TRaster64P tileRas64 = tileRas;
	TRaster64P warper64 = warper;

	if (rasIn32 && tileRas32 && warper32) {
		Warper<TPixel32> warper(rasInPos, warperPos, rasIn32, warper32, tileRas32, params);
		warper.createLattice();
		warper.shepardWarp();
	} else if (rasIn64 && tileRas64 && warper64) {
		Warper<TPixel64> warper(rasInPos, warperPos, rasIn64, warper64, tileRas64, params);
		warper.createLattice();
		warper.shepardWarp();
	} else
		throw TRopException("warp: unsupported raster types");
}