#include "tregion.h"
// TnzCore includes
#include "tregionprop.h"
#include "tcurves.h"
#include "tstroke.h"
#include "tcurveutil.h"
// tcg includes
#include "tcg/numeric_ops.h"
#include "tcg/poly_ops.h"
// STD includes
#include <set>
//DEFINE_CLASS_CODE(TEdge, 40)
//=============================================================================
/*
void foo()
{
TEdgeP p1 = new TEdge();
TEdgeP p2 = new TEdge(*p1);
p1 = 0;
TEdge *e = new TEdge;
}
*/
//=============================================================================
bool compareEdge(const TEdge &a,
const TEdge &b)
{
return a.m_s == b.m_s;
}
//-----------------------------------------------------------------------------
class TRegion::Imp
{
double m_polyStep;
public:
TRegionProp *m_prop;
mutable TRectD m_bBox;
mutable bool m_isValidBBox;
std::vector<TEdge *> m_edge;
std::vector<TRegion *> m_includedRegionArray;
public:
Imp()
: m_polyStep(-1), m_prop(0), m_bBox(), m_isValidBBox(true), m_edge(), m_includedRegionArray() {}
~Imp()
{
delete m_prop;
for (UINT i = 0; i < m_includedRegionArray.size(); i++)
delete m_includedRegionArray[i];
}
void printContains(const TPointD &p) const;
void invalidateBBox() { m_isValidBBox = false; }
#ifdef _DEBUG
void checkRegion()
{
for (UINT i = 0; i < m_edge.size(); i++) {
TEdge *e = m_edge[i];
assert(e->getStyle() >= 0 && e->getStyle() <= 1000);
assert(e->m_w0 >= 0 && e->m_w1 <= 1);
assert(e->m_s->getChunkCount() >= 0 && e->m_s->getChunkCount() <= 10000);
}
}
#endif
TRectD getBBox() const
{
if (!m_isValidBBox) {
m_bBox = TRectD();
for (UINT i = 0; i < m_edge.size(); i++)
m_bBox += m_edge[i]->m_s->getBBox(std::min(m_edge[i]->m_w0, m_edge[i]->m_w1),
std::max(m_edge[i]->m_w0, m_edge[i]->m_w1));
m_isValidBBox = true;
}
return m_bBox;
}
bool contains(const TPointD &p) const;
bool contains(const TRegion::Imp &p) const;
//this function returns true only if p is contained in the region, taking into account holes in it.
bool noSubregionContains(const TPointD &p) const;
void addSubregion(TRegion *region);
// bool getPointInside(TPointD &p) const;
bool slowContains(const TRegion::Imp &r) const;
bool contains(const TStroke &s, bool mayIntersect) const;
bool isSubRegionOf(const TRegion::Imp &r) const;
bool getInternalPoint(TPointD &p, double left, double right, double y);
void computeScanlineIntersections(double y, std::vector<double> &intersections) const;
bool thereAreintersections(const TStroke &s) const;
int leftScanlineIntersections(const TPointD &p,
double(TPointD::*h), double(TPointD::*v)) const;
};
//=============================================================================
TRegion *TRegion::findRegion(const TRegion &r) const
{
if (areAlmostEqual(r.getBBox(), getBBox(), 1e-3))
return (TRegion *)this;
if (!getBBox().contains(r.getBBox()))
return 0;
TRegion *ret;
for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
if ((ret = m_imp->m_includedRegionArray[i]->findRegion(r)) != 0)
return ret;
return 0;
}
//=============================================================================
TRegion::TRegion()
: m_imp(new TRegion::Imp())
{
//m_imp->m_fillStyle->setRegion(this);
}
//-----------------------------------------------------------------------------
TRegion::~TRegion()
{
}
//-----------------------------------------------------------------------------
/*
bool TRegion::Imp::contains(const TPointD &p) const
{
bool leftIntersectionsAreOdd=false, rightIntersectionsAreOdd=false;
if (!getBBox().contains(p))
return false;
vector<TPointD> poly;
UINT i=0 ;
//region2polyline(poly, *this);
for(; i<m_edge.size(); i++)
stroke2polyline( poly, *m_edge[i]->m_s, 1.0, m_edge[i]->m_w0, m_edge[i]->m_w1);
poly.push_back(poly.front());
TRectD bbox = getBBox();
double dist = (bbox.x1-bbox.x0)*0.5;
TSegment horizSegment = TSegment(TPointD(bbox.x0-dist, p.y),TPointD(bbox.x1+dist, p.y));
for (i=0; i<poly.size()-1; i++)
{
vector<DoublePair> intersections;
if (poly[i].y==poly[i+1].y && poly[i+1].y==p.y)
continue;
if (intersect(TSegment(poly[i], poly[i+1]), horizSegment,
intersections))
{
assert(intersections.size()==1);
TPointD pInt = horizSegment.getPoint(intersections[0].second);
if (pInt==poly[i+1])
continue;
if (pInt.x>p.x)
rightIntersectionsAreOdd = !rightIntersectionsAreOdd;
else
leftIntersectionsAreOdd = !leftIntersectionsAreOdd;
}
}
//assert(!(leftIntersectionsAreOdd^rightIntersectionsAreOdd)); //intersections must be even!
return leftIntersectionsAreOdd;
}
*/
//-----------------------------------------------------------------------------
//questa funzione fa l'intersezione della porzione [t0, t1) della quadratica q
// con una retta orizzontale passante per p.y,
//e setta i due booleani in base a quante intersezioni stanno a sx e a dx di p
//il valore di ritorno dice se l'intersezione e' ad un estremo e se la curva
//sta tutta sopra(1) o tutta sotto) -1;
//questo valore viene riusato come input della successiva chiamata a findSide:
//se anche questa ha l'intersezione allo stesso estremo e sullo stesso
//lato (cuspide) quell'intersezione non conta(doppia, come con la tangente)
//-----------------------------------------------------------------------------
namespace
{
inline int computeSide(const TQuadratic &q, double t, bool forward)
{
double speedY = q.getSpeedY(t);
if (speedY == 0) //se la tangente e' zero, non si riesce a capire su che semipiano sta la curva rispetto alla semiretta orizzontale campione. in questo caso e' sufficiente vedere dove giace il terzo controlpoint della quad .
speedY = (forward ? (q.getP2().y - q.getPoint(t).y) : (q.getPoint(t).y - q.getP0().y)); //q.getSpeedY(t+(forward?0.00001:-0.00001));
return speedY > 0 ? 1 : -1;
}
inline void computeIntersection(const TQuadratic &q, double t, double t0, double t1, double x, int sideOfPrevious, bool &leftAreOdd)
{
if (((t0 < t1 && t >= t0 && t < t1) || (t0 > t1 && t > t1 && t <= t0)) && q.getX(t) <= x) {
if (t == t0) {
assert(sideOfPrevious != 0);
if (computeSide(q, t0, t0 < t1) != sideOfPrevious) //cuspide! non considero l'intersezione
return;
}
leftAreOdd = !leftAreOdd;
}
}
//-----------------------------------------------------------------------------
__inline int findSides(const TPointD &p, const TQuadratic &q, double t0, double t1, bool &leftAreOdd, int sideOfPrevious)
{
TRectD bbox = q.getBBox();
//assert(!(t0==t1 && q.getPoint(t0).y==p.y));
if (bbox.y0 > p.y || bbox.y1 < p.y)
return 0;
if (t0 == t1)
return sideOfPrevious;
double y0 = q.getP0().y;
double y1 = q.getP1().y;
double y2 = q.getP2().y;
/* ottimizzazione....lenta.
if((q.getPoint(t0).y-p.y)*(q.getPoint(t1).y-p.y)<0)
{
if(bbox.x1<p.x) {leftAreOdd = !leftAreOdd; return; }
else if(bbox.x0>p.x) {rightAreOdd = !rightAreOdd; return; }
}
*/
double det;
double alfa = y0 - 2 * y1 + y2;
if (!areAlmostEqual(alfa, 0, 1e-10)) //alfa, il coefficiente di t^2, non e' zero: due soluzioni
{
det = y1 * y1 - y0 * y2 + p.y * alfa;
if (det < 0 || (det == 0 && y0 != p.y && y2 != p.y)) // con det<0 no soluzioni reali o due soluzioni coincidenti
// (a meno che le soluzioni non siano agli estremi, in quel caso e'
// una sola!), due intersezioni stesso lato, posso scartare
return 0;
else {
double ta, tb;
det = sqrt(det);
ta = tb = (y0 - y1 + det) / alfa;
computeIntersection(q, ta, t0, t1, p.x, sideOfPrevious, leftAreOdd);
if (det != 0) {
tb = (y0 - y1 - det) / alfa;
computeIntersection(q, tb, t0, t1, p.x, sideOfPrevious, leftAreOdd);
}
if (ta == t1 || tb == t1)
return computeSide(q, t1, t1 < t0); //q.getSpeedY(t1)>0?1:-1;
else
return 0;
}
} else //alfa, il coefficiente di t^2 e' zero: una sola soluzione
{
if (y2 == y0) //segmento orizzontale
return sideOfPrevious;
double t = (p.y - y0) / (y2 - y0);
if ((t0 < t1 && t >= t0 && t < t1) || (t0 > t1 && t > t1 && t <= t0)) {
if ((q.getP2().x - q.getP0().x) * t + q.getP0().x <= p.x) {
leftAreOdd = !leftAreOdd;
if (t == t0) {
assert(sideOfPrevious != 0);
if (((y2 - y0 > 0) ? 1 : -1) != sideOfPrevious)
leftAreOdd = !leftAreOdd;
}
}
}
if (t == t1)
return (y2 - y0 > 0) ? 1 : -1; //q.getPoint(t0).y>p.y?1:-1;
else
return 0;
}
}
//-----------------------------------------------------------------------------
void addIntersection(const TQuadratic &q, double t, double t0, double t1, std::vector<double> &intersections, double intersection, std::vector<int> &sides)
{
int side = 0;
if (areAlmostEqual(t, t0, 1e-4))
side = (q.getPoint(t0 + ((t1 > t0) ? 0.01 : -0.01)).y - q.getPoint(t0).y) > 0 ? 1 : -1;
else if (areAlmostEqual(t, t1, 1e-4))
side = (q.getPoint(t1 + ((t0 > t1) ? 0.01 : -0.01)).y - q.getPoint(t1).y) > 0 ? 1 : -1;
if (!intersections.empty() && areAlmostEqual(intersection, intersections.back(), 1e-4)) {
//assert(areAlmostEqual(t, t0, 1e-3));
assert(sides.back() != 0);
if (side == sides.back()) {
intersections.pop_back();
sides.pop_back();
}
} else {
intersections.push_back(intersection);
sides.push_back(side);
}
}
//-----------------------------------------------------------------------------
void findIntersections(double y, const TQuadratic &q, double t0, double t1, std::vector<double> &intersections,
std::vector<int> &sides)
{
TRectD bbox = q.getBBox();
int side = 0;
if (t0 == t1 || bbox.y0 > y || bbox.y1 < y)
return;
double y0 = q.getP0().y;
double y1 = q.getP1().y;
double y2 = q.getP2().y;
double alfa = y0 - 2 * y1 + y2;
if (!areAlmostEqual(alfa, 0, 1e-10)) //la quadratica non e' un segmento
{
double det = y1 * y1 - y0 * y2 + y * alfa;
assert(det >= 0);
if (det < 1e-6) // con det==0 soluzioni coincidenti
{
double t = (y0 - y1) / alfa;
if (areAlmostEqual(t, t0, 1e-5) || areAlmostEqual(t, t1, 1e-5)) {
double s = 1 - t;
double intersection = q.getP0().x * s * s + 2 * t * s * q.getP1().x + t * t * q.getP2().x;
addIntersection(q, t, t0, t1, intersections, intersection, sides);
}
} else {
double ta, tb;
bool rev = q.getPoint(t0).x > q.getPoint(t1).x;
//if (alfa<0) rev = !rev;
det = sqrt(det);
ta = (y0 - y1 + det) / alfa;
double sa = 1 - ta;
double intersectiona = q.getP0().x * sa * sa + 2 * ta * sa * q.getP1().x + ta * ta * q.getP2().x;
tb = (y0 - y1 - det) / alfa;
double sb = 1 - tb;
double intersectionb = q.getP0().x * sb * sb + 2 * tb * sb * q.getP1().x + tb * tb * q.getP2().x;
if ((rev && intersectiona < intersectionb) || (!rev && intersectiona > intersectionb))
tswap(intersectiona, intersectionb), tswap(ta, tb);
if ((t0 < t1 && ta >= t0 && ta <= t1) || (t0 >= t1 && ta >= t1 && ta <= t0))
addIntersection(q, ta, t0, t1, intersections, intersectiona, sides);
if ((t0 < t1 && tb >= t0 && tb <= t1) || (t0 >= t1 && tb >= t1 && tb <= t0))
addIntersection(q, tb, t0, t1, intersections, intersectionb, sides);
}
} else if (y2 != y0) //la quadratica e' un segmento non orizzontale
{
if (y2 == y0)
return;
double t = (y - y0) / (y2 - y0);
if (!((t0 < t1 && t >= t0 && t <= t1) || (t0 >= t1 && t >= t1 && t <= t0)))
return;
double intersection = (q.getP2().x - q.getP0().x) * t + q.getP0().x;
if (areAlmostEqual(t, t1, 1e-4))
side = (q.getPoint(t0).y > q.getPoint(t1).y) ? 1 : -1;
else if (areAlmostEqual(t, t0, 1e-4))
side = (q.getPoint(t1).y > q.getPoint(t0).y) ? 1 : -1;
if (!intersections.empty() && areAlmostEqual(intersection, intersections.back(), 1e-4)) {
//assert(areAlmostEqual(t, t0, 1e-4));
assert(sides.back() != 0);
assert(side != 0);
if (side == sides.back()) {
intersections.pop_back();
sides.pop_back();
}
} else {
intersections.push_back(intersection);
sides.push_back(side);
}
} else //la quadratica e' un segmento orizzontale
findIntersections(y, TQuadratic(q.getPoint(t0), 0.5 * (q.getPoint(t0) + q.getPoint(t1)) + TPointD(0, 1.0), q.getPoint(t1)), 0, 1, intersections, sides);
}
}
//-----------------------------------------------------------------------------
bool TRegion::contains(const TPointD &p) const
{
return m_imp->contains(p);
}
//-----------------------------------------------------------------------------
bool TRegion::contains(const TStroke &s, bool mayIntersect) const
{
return m_imp->contains(s, mayIntersect);
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
void TRegion::checkRegion()
{
m_imp->checkRegion();
}
#endif
//-----------------------------------------------------------------------------
bool TRegion::contains(const TRegion &r) const
{
return m_imp->contains(*r.m_imp);
}
//-----------------------------------------------------------------------------
/*
bool TRegion::getPointInside(TPointD &p) const
{
return m_imp->getPointInside(p);
}
*/
//-----------------------------------------------------------------------------
TRegionProp *TRegion::getProp()
{
//if(m_working) buttato m_working
return m_imp->m_prop;
/*
int styleId = getStyle();
if(!styleId ) return 0;
TColorStyle * style = palette->getStyle(styleId);
if (!style->isRegionStyle() || style->isEnabled() == false)
return 0;
if( !m_imp->m_prop || style != m_imp->m_prop->getColorStyle() )
{
delete m_imp->m_prop;
m_imp->m_prop = style->makeRegionProp(this);
}
return m_imp->m_prop;
*/
}
//-----------------------------------------------------------------------------
void TRegion::setProp(TRegionProp *prop)
{
assert(prop);
delete m_imp->m_prop;
m_imp->m_prop = prop;
}
//-----------------------------------------------------------------------------
/*
void TRegion::draw(const TVectorRenderData &rd)
{
int styleId = getStyle();
if(!styleId )
return;
TColorStyle * style = rd.m_palette->getStyle(styleId);
if (!style->isRegionStyle() || style->isEnabled() == false)
return;
if( !m_imp->m_prop || style != m_imp->m_prop->getColorStyle() )
{
delete m_imp->m_prop;
m_imp->m_prop = style->makeRegionProp(this);
}
m_imp->m_prop->draw(rd);
}
*/
//-----------------------------------------------------------------------------
void checkPolyline(const std::vector<T3DPointD> &p)
{
int ret;
if (p.size() < 3)
return;
TPointD p1;
TPointD p2;
int pointSize = (int)p.size() - 1;
for (int i = 0; i < pointSize; i++) {
for (int j = i + 1; j < pointSize; j++) {
std::vector<DoublePair> res;
p1 = TPointD(p[i].x, p[i].y);
p2 = TPointD(p[i + 1].x, p[i + 1].y);
TSegment s0(p1, p2);
p1 = TPointD(p[j].x, p[j].y);
p2 = TPointD(p[j + 1].x, p[j + 1].y);
TSegment s1(p1, p2);
ret = intersect(s0, s1, res);
if (ret)
assert(
(ret == 1) &&
(areAlmostEqual(res[0].first, 1) ||
areAlmostEqual(res[0].first, 0)) &&
(areAlmostEqual(res[0].second, 1) ||
areAlmostEqual(res[0].second, 0)));
}
}
p1 = TPointD(p.back().x, p.back().y);
p2 = TPointD(p[0].x, p[0].y);
TSegment s0(p1, p2);
for (int j = 0; j < pointSize; j++) {
std::vector<DoublePair> res;
p1 = TPointD(p[j].x, p[j].y);
p2 = TPointD(p[j + 1].x, p[j + 1].y);
TSegment s1(p1, p2);
ret = intersect(s0, s1, res);
if (ret)
assert(
(ret == 1) &&
(areAlmostEqual(res[0].first, 1) ||
areAlmostEqual(res[0].first, 0)) &&
(areAlmostEqual(res[0].second, 1) ||
areAlmostEqual(res[0].second, 0)));
}
}
//-----------------------------------------------------------------------------
bool TRegion::Imp::getInternalPoint(TPointD &p, double left, double right, double y)
{
assert(left < right);
if (areAlmostEqual(left, right, 1e-2))
return false;
double mid = 0.5 * (left + right);
p = TPointD(mid, y);
if (noSubregionContains(p))
return true;
if (!getInternalPoint(p, left, mid, y))
return getInternalPoint(p, mid, right, y);
else
return true;
}
//-----------------------------------------------------------------------------
bool TRegion::Imp::noSubregionContains(const TPointD &p) const
{
if (contains(p)) {
for (int i = 0; i < (int)m_includedRegionArray.size(); i++)
if (m_includedRegionArray[i]->contains(p))
return false;
return true;
} else
return false;
}
//-----------------------------------------------------------------------------
void TRegion::computeScanlineIntersections(double y, std::vector<double> &intersections) const
{
m_imp->computeScanlineIntersections(y, intersections);
}
//-----------------------------------------------------------------------------
void TRegion::Imp::computeScanlineIntersections(double y, std::vector<double> &intersections) const
{
TRectD bbox = getBBox();
if (y <= bbox.y0 || y >= bbox.y1)
return;
assert(intersections.empty());
UINT i, firstSide = 0;
std::vector<int> sides;
for (i = 0; i < m_edge.size(); i++) {
TEdge *e = m_edge[i];
TStroke *s = e->m_s;
if (s->getBBox().y0 > y || s->getBBox().y1 < y)
continue;
int chunkIndex0, chunkIndex1;
double t0, t1;
s->getChunkAndT(e->m_w0, chunkIndex0, t0);
s->getChunkAndT(e->m_w1, chunkIndex1, t1);
if (chunkIndex0 > chunkIndex1) {
findIntersections(y, *s->getChunk(chunkIndex0), t0, 0, intersections, sides);
for (int j = chunkIndex0 - 1; j > chunkIndex1; j--)
findIntersections(y, *s->getChunk(j), 1, 0, intersections, sides);
findIntersections(y, *s->getChunk(chunkIndex1), 1, t1, intersections, sides);
} else if (chunkIndex0 < chunkIndex1) {
findIntersections(y, *s->getChunk(chunkIndex0), t0, 1, intersections, sides);
for (int j = chunkIndex0 + 1; j < chunkIndex1; j++)
findIntersections(y, *s->getChunk(j), 0, 1, intersections, sides);
findIntersections(y, *s->getChunk(chunkIndex1), 0, t1, intersections, sides);
} else {
findIntersections(y, *s->getChunk(chunkIndex0), t0, t1, intersections, sides);
}
}
if (intersections.size() > 0 && intersections.front() == intersections.back()) {
intersections.pop_back();
if (!sides.empty() && sides.front() == sides.back() && intersections.size() > 0)
intersections.erase(intersections.begin());
}
std::sort(intersections.begin(), intersections.end());
assert(intersections.size() % 2 == 0);
}
//-----------------------------------------------------------------------------
bool TRegion::Imp::contains(const TPointD &p) const
{
bool leftAreOdd = false;
if (!getBBox().contains(p))
return false;
//printContains(p);
UINT i;
int side = 0;
for (i = 0; i < m_edge.size() * 2; i++) //i pari, esplora gli edge,
//i dispari esplora i segmenti di autoclose tra un edge e il successivo
{
if (i & 0x1) {
TPointD p0 = m_edge[i / 2]->m_s->getPoint(m_edge[i / 2]->m_w1);
TPointD p1;
if (i / 2 < m_edge.size() - 1)
p1 = m_edge[i / 2 + 1]->m_s->getPoint(m_edge[i / 2 + 1]->m_w0);
else
p1 = m_edge[0]->m_s->getPoint(m_edge[0]->m_w0);
if (std::min(p0.y, p1.y) > p.y || std::max(p0.y, p1.y) < p.y)
continue;
if (!areAlmostEqual(p0, p1, 1e-2))
side = findSides(p, TQuadratic(p0, 0.5 * (p0 + p1), p1), 0.0, 1.0, leftAreOdd, side);
continue;
}
TEdge *e = m_edge[i / 2];
TStroke *s = e->m_s;
if (s->getBBox().y0 > p.y || s->getBBox().y1 < p.y)
continue;
double t0, t1;
int chunkIndex0, chunkIndex1;
const TThickQuadratic *q0, *q1;
s->getChunkAndT(e->m_w0, chunkIndex0, t0);
s->getChunkAndT(e->m_w1, chunkIndex1, t1);
q0 = s->getChunk(chunkIndex0);
q1 = s->getChunk(chunkIndex1);
if (i == 0 && areAlmostEqual(q0->getPoint(t0).y, p.y)) {
double tEnd;
int chunkIndexEnd;
TEdge *edgeEnd = m_edge.back();
edgeEnd->m_s->getChunkAndT(edgeEnd->m_w1, chunkIndexEnd, tEnd);
assert(areAlmostEqual(edgeEnd->m_s->getChunk(chunkIndexEnd)->getPoint(tEnd).y, p.y));
side = edgeEnd->m_s->getChunk(chunkIndexEnd)->getSpeed(tEnd).y > 0 ? 1 : -1;
}
if (chunkIndex0 != chunkIndex1) {
/*if (chunkIndex0>chunkIndex1)
{
tswap(chunkIndex0, chunkIndex1);
tswap(t0, t1);
}*/
if (chunkIndex0 > chunkIndex1) {
side = findSides(p, *q0, t0, 0, leftAreOdd, side);
for (int j = chunkIndex0 - 1; j > chunkIndex1; j--)
side = findSides(p, *s->getChunk(j), 1, 0, leftAreOdd, side);
side = findSides(p, *q1, 1, t1, leftAreOdd, side);
} else {
side = findSides(p, *q0, t0, 1, leftAreOdd, side);
for (int j = chunkIndex0 + 1; j < chunkIndex1; j++)
side = findSides(p, *s->getChunk(j), 0, 1, leftAreOdd, side);
side = findSides(p, *q1, 0, t1, leftAreOdd, side);
}
} else
side = findSides(p, *q0, t0, t1, leftAreOdd, side);
if (i & 0x1)
delete q0;
}
return leftAreOdd;
}
//-----------------------------------------------------------------------------
int TRegion::Imp::leftScanlineIntersections(
const TPointD &p,
double(TPointD::*h), double(TPointD::*v)) const
{
struct Locals {
const Imp *m_this;
double m_x, m_y,
m_tol;
double TPointD::*m_h,
TPointD::*m_v;
inline double x(const TPointD &p) const { return p.*m_h; }
inline double y(const TPointD &p) const { return p.*m_v; }
inline double get(const TQuadratic &q, double t, double(TPointD::*val)) const
{
double one_t = 1.0 - t;
return one_t * (one_t * q.getP0().*val + t * q.getP1().*val) + t * (one_t * q.getP1().*val + t * q.getP2().*val);
}
inline double getX(const TQuadratic &q, double t) const { return get(q, t, m_h); }
inline double getY(const TQuadratic &q, double t) const { return get(q, t, m_v); }
void getEdgeData(int e, TEdge *&ed, TStroke *&s,
int &chunk0, const TThickQuadratic *&q0, double &t0,
int &chunk1, const TThickQuadratic *&q1, double &t1) const
{
ed = m_this->m_edge[e];
s = ed->m_s;
s->getChunkAndT(ed->m_w0, chunk0, t0);
s->getChunkAndT(ed->m_w1, chunk1, t1);
q0 = s->getChunk(chunk0);
q1 = s->getChunk(chunk1);
}
bool isInYRange(double y0, double y1) const
{
return (y0 <= m_y && m_y < y1) // Assuming the first endpoint is vertical-including,
|| (y1 < m_y && m_y <= y0); // while the latter is not. Vertical conditions are EXACT.
}
bool areInYRange(const TQuadratic &q, double t0, double t1,
int(&solIdx)[2]) const
{
assert(0.0 <= t0 && t0 <= 1.0), assert(0.0 <= t1 && t1 <= 1.0);
const TPointD &p0 = q.getP0(), &p1 = q.getP1(), &p2 = q.getP2();
double der[2] = {y(p1) - y(p0), y(p0) - y(p1) + y(p2) - y(p1)},
s;
double y0 = getY(q, t0), y1 = getY(q, t1);
if (tcg::poly_ops::solve_1(der, &s, m_tol)) {
if (t0 <= s && s < t1) {
double ys = getY(q, s);
solIdx[0] = (ys < m_y && m_y <= y0 || y0 <= m_y && m_y < ys) ? 0 : -1;
solIdx[1] = (ys < m_y && m_y < y1 || y1 < m_y && m_y < ys) ? 1 : -1;
} else if (t1 < s && s <= t0) {
double ys = getY(q, s);
solIdx[0] = (ys < m_y && m_y <= y0 || y0 <= m_y && m_y < ys) ? 1 : -1;
solIdx[1] = (ys < m_y && m_y < y1 || y1 < m_y && m_y < ys) ? 0 : -1;
} else {
solIdx[0] = isInYRange(y0, y1) ? (t0 < s) ? 0 : 1
: -1;
solIdx[1] = -1;
}
} else
solIdx[1] = solIdx[0] = -1;
return (solIdx[0] >= 0 || solIdx[1] >= 0);
}
int leftScanlineIntersections(const TSegment &seg, bool &ascending)
{
const TPointD &p0 = seg.getP0(), &p1 = seg.getP1();
bool wasAscending = ascending;
ascending = (y(p1) > y(p0)) ? true
: (y(p1) < y(p0)) ? false
: (wasAscending = !ascending, ascending); // Couples with the cusp check below
if (!isInYRange(y(p0), y(p1)))
return 0;
if (m_y == y(p0))
return int(x(p0) < m_x && ascending == wasAscending); // Cusps treated here
double y1_y0 = y(p1) - y(p0), // (x, m_y) in (p0, p1) from here on
poly[2] = {(m_y - y(p0)) * (x(p1) - x(p0)), -y1_y0},
sx_x0;
return tcg::poly_ops::solve_1(poly, &sx_x0, m_tol) ? int(sx_x0 < m_x - x(p0))
: int(x(p0) < m_x && x(p1) < m_x); // Almost horizontal segments are
} // flattened along the axes
int isAscending(const TThickQuadratic &q, double t, bool forward)
{
double y0 = y(q.getP0()), y1 = y(q.getP1()), y2 = y(q.getP2()),
y1_y0 = y1 - y0, y2_y1 = y2 - y1;
double yspeed_2 = tcg::numeric_ops::lerp(y1_y0, y2_y1, t) * (2 * int(forward) - 1),
yaccel = y2_y1 - y1_y0;
return (yspeed_2 > 0.0) ? 1
: (yspeed_2 < 0.0) ? -1
: tcg::numeric_ops::sign(yaccel);
}
int leftScanlineIntersections(const TQuadratic &q, double t0, double t1,
bool &ascending)
{
const TPointD &p0 = q.getP0(), &p1 = q.getP1(), &p2 = q.getP2();
double y1_y0 = y(p1) - y(p0),
accel = y(p2) - y(p1) - y1_y0;
// Fallback to segment case whenever we have too flat quads
if (std::fabs(accel) < m_tol)
return leftScanlineIntersections(TSegment(q.getPoint(t0), q.getPoint(t1)), ascending);
// Calculate new ascension
int ascends = isAscending(q, t1, t0 < t1);
bool wasAscending = ascending;
ascending = (ascends > 0) ? true
: (ascends < 0) ? false
: (wasAscending = !ascending, ascending); // Couples with the cusps check below
// In case the y coords are not in range, quit
int solIdx[2];
if (!areInYRange(q, t0, t1, solIdx))
return 0;
// Identify coordinates for which q(t) == y
double poly[3] = {y(p0) - m_y, 2.0 * y1_y0, accel},
s[2];
int sCount = tcg::poly_ops::solve_2(poly, s); // Tolerance dealt at the first bailout above
if (sCount == 2) {
// Calculate result
int result = 0;
if (solIdx[0] >= 0) {
result += int(getX(q, s[solIdx[0]]) < m_x && (getY(q, t0) != m_y || ascending == wasAscending)); // Cusp check
}
if (solIdx[1] >= 0)
result += int(getX(q, s[solIdx[1]]) < m_x);
return result;
}
return (assert(sCount == 0), 0); // Should never happen, since m_y is in range. If it ever happens,
// it must be close to the extremal - so quit with no intersections.
}
} locals = {this, p.*h, p.*v, 1e-4, h, v};
TEdge *ed;
TStroke *s;
int chunk0, chunk1;
const TThickQuadratic *q0, *q1;
double t0, t1;
UINT e, eCount = m_edge.size();
int leftInters = 0;
bool ascending = (locals.getEdgeData(eCount - 1, ed, s, chunk0, q0, t0, chunk1, q1, t1),
locals.isAscending(*q1, t1, (t0 < t1)));
for (e = 0; e != eCount; ++e) {
// Explore current edge
{
// Retrieve edge data
locals.getEdgeData(e, ed, s, chunk0, q0, t0, chunk1, q1, t1);
// Compare edge against scanline segment
if (chunk0 != chunk1) {
if (chunk0 < chunk1) {
leftInters += locals.leftScanlineIntersections(*q0, t0, 1.0, ascending);
for (int c = chunk0 + 1; c != chunk1; ++c)
leftInters += locals.leftScanlineIntersections(*s->getChunk(c), 0.0, 1.0, ascending);
leftInters += locals.leftScanlineIntersections(*q1, 0.0, t1, ascending);
} else {
leftInters += locals.leftScanlineIntersections(*q0, t0, 0.0, ascending);
for (int c = chunk0 - 1; c != chunk1; --c)
leftInters += locals.leftScanlineIntersections(*s->getChunk(c), 1.0, 0.0, ascending);
leftInters += locals.leftScanlineIntersections(*q1, 1.0, t1, ascending);
}
} else
leftInters += locals.leftScanlineIntersections(*q0, t0, t1, ascending);
}
// Explore autoclose segment at the end of current edge
{
int nextE = (e + 1) % int(m_edge.size());
const TPointD &p0 = m_edge[e]->m_s->getPoint(m_edge[e]->m_w1),
&p1 = m_edge[nextE]->m_s->getPoint(m_edge[nextE]->m_w0);
leftInters += locals.leftScanlineIntersections(TSegment(p0, p1), ascending);
}
}
return leftInters;
}
//-----------------------------------------------------------------------------
int TRegion::scanlineIntersectionsBefore(double x, double y, bool horizontal) const
{
static double TPointD::*const dir[2] = {&TPointD::x, &TPointD::y};
return m_imp->leftScanlineIntersections(TPointD(x, y), dir[!horizontal], dir[horizontal]);
}
//-----------------------------------------------------------------------------
bool TRegion::contains(const TEdge &e) const
{
for (UINT i = 0; i < m_imp->m_edge.size(); i++)
if (*m_imp->m_edge[i] == e)
return true;
return false;
}
// Una regione contiene un'altra se non hanno strokes in comune e un qualsiasi punto
// della seconda e' contenuto nella prima.
bool TRegion::Imp::contains(const TRegion::Imp &r) const
{
if (!getBBox().contains(r.getBBox()))
return false;
for (UINT i = 0; i < r.m_edge.size(); i++)
for (UINT j = 0; j < m_edge.size(); j++)
if (*r.m_edge[i] == *m_edge[j])
return false;
// nessuno stroke in comune!!
/*
for ( i=0; i<r.m_edge.size(); i++)
{
TEdge *e = r.m_edge[i];
if (!contains(e->m_s->getThickPoint(e->m_w0)))
return false;
if (!contains(e->m_s->getThickPoint((e->m_w0+e->m_w1)/2.0)))
return false;
if (!contains(e->m_s->getThickPoint(e->m_w1)))
return false;
}
*/
TEdge *e = r.m_edge[0];
return contains(e->m_s->getThickPoint((e->m_w0 + e->m_w1) / 2.0));
}
//-----------------------------------------------------------------------------
bool TRegion::Imp::thereAreintersections(const TStroke &s) const
{
for (UINT i = 0; i < m_edge.size(); i++) {
std::vector<DoublePair> dummy;
if (intersect(m_edge[i]->m_s, &s, dummy, true))
return true;
}
return false;
}
//-----------------------------------------------------------------------------
bool TRegion::Imp::contains(const TStroke &s, bool mayIntersect) const
{
if (!getBBox().contains(s.getBBox()))
return false;
if (mayIntersect && thereAreintersections(s))
return false;
return contains(s.getThickPoint(0.5));
}
//-----------------------------------------------------------------------------
bool TRegion::isSubRegionOf(const TRegion &r) const
{
return m_imp->isSubRegionOf(*r.m_imp);
}
//-----------------------------------------------------------------------------
/*
bool TRegion::Imp::isSubRegionOf(const TRegion::Imp &r) const
{
UINT i, j;
bool found, areTouching=false;
if (!r.getBBox().contains(getBBox()))
return false;
for (i=0; i<m_edge.size(); i++)
{
for (j=0, found=false; !found && j<r.m_edge.size(); j++)
if (m_edge[i]->m_s==r.m_edge[j]->m_s)
{
double w0 = std::min(m_edge[i]->m_w0, m_edge[i]->m_w1) ;
double w1 = std::max(m_edge[i]->m_w0, m_edge[i]->m_w1) ;
double r_w0 = std::min(r.m_edge[j]->m_w0, r.m_edge[j]->m_w1);
double r_w1 = std::max(r.m_edge[j]->m_w0, r.m_edge[j]->m_w1);
if ((w0>=r_w0 || areAlmostEqual(w0, r_w0, 0.1)) &&
(w1<=r_w1 || areAlmostEqual(w1, r_w1, 0.1)))
{
found=true;
areTouching = true;
}
else
found=false;
//found=true;
}
if ((!found) && !r.contains(m_edge[i]->m_s->getPoint(0.5*(m_edge[i]->m_w0+m_edge[i]->m_w1))))
return false;
}
return areTouching;
}
*/
//-----------------------------------------------------------------------------
bool TRegion::Imp::isSubRegionOf(const TRegion::Imp &r) const
{
if (!r.getBBox().contains(getBBox()))
return false;
for (UINT i = 0; i < m_edge.size(); i++) {
for (UINT j = 0; j < r.m_edge.size(); j++) {
TEdge *e = r.m_edge[j];
TEdge *subE = m_edge[i];
if (subE->m_index == e->m_index &&
(subE->m_w0 < m_edge[i]->m_w1) == (e->m_w0 < e->m_w1)) {
bool forward = (e->m_w0 < e->m_w1);
if (forward && (subE->m_w0 >= e->m_w0 || areAlmostEqual(subE->m_w0, e->m_w0, 1e-3)) &&
(subE->m_w1 <= e->m_w1 || areAlmostEqual(subE->m_w1, e->m_w1, 1e-3)))
return true;
if (!forward && (subE->m_w0 <= e->m_w0 || areAlmostEqual(subE->m_w0, e->m_w0, 1e-3)) &&
(subE->m_w1 >= e->m_w1 || areAlmostEqual(subE->m_w1, e->m_w1, 1e-3)))
return true;
}
}
}
return false;
}
//------------------------------------------------------------------------------
TRegion *TRegion::getRegion(const TPointD &p)
{
for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
if (m_imp->m_includedRegionArray[i]->contains(p))
return m_imp->m_includedRegionArray[i]->getRegion(p);
return this;
}
//-----------------------------------------------------------------------------
bool TRegion::getInternalPoint(TPointD &p)
{
return m_imp->getInternalPoint(p, getBBox().x0, getBBox().x1, 0.5 * (getBBox().y0 + getBBox().y1));
}
//-----------------------------------------------------------------------------
int TRegion::fill(const TPointD &p, int styleId)
{
UINT i;
for (i = 0; i < m_imp->m_includedRegionArray.size(); i++)
if (m_imp->m_includedRegionArray[i]->contains(p))
return m_imp->m_includedRegionArray[i]->fill(p, styleId);
int ret = getStyle();
setStyle(styleId);
return ret;
}
//-----------------------------------------------------------------------------
bool TRegion::selectFill(const TRectD &selArea, int styleId)
{
bool hitSomeRegions = false;
if (selArea.contains(getBBox())) {
hitSomeRegions = true;
setStyle(styleId);
}
int regNum = m_imp->m_includedRegionArray.size();
for (int i = 0; i < regNum; i++)
hitSomeRegions |= m_imp->m_includedRegionArray[i]->selectFill(selArea, styleId);
return hitSomeRegions;
}
//-----------------------------------------------------------------------------
void TRegion::invalidateBBox()
{
m_imp->invalidateBBox();
for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
m_imp->m_includedRegionArray[i]->invalidateBBox();
}
//-----------------------------------------------------------------------------
/*
TRectD TRegion::getBBox(vector<TRectD>& bboxReg,vector<TPointD>& intersPoint) const
{
return m_imp->getBBox(bboxReg,intersPoint);
}
*/
//-----------------------------------------------------------------------------
TRectD TRegion::getBBox() const
{
return m_imp->getBBox();
}
//-----------------------------------------------------------------------------
void TRegion::addEdge(TEdge *e, bool minimizeEdges)
{
if (minimizeEdges &&
e->m_s->getMaxThickness() > 0.0 && //outline strokes ignore this
!m_imp->m_edge.empty() &&
m_imp->m_edge.back()->m_index == e->m_index &&
areAlmostEqual(m_imp->m_edge.back()->m_w1, e->m_w0, 1e-5))
m_imp->m_edge.back()->m_w1 = e->m_w1;
else
m_imp->m_edge.push_back(e);
m_imp->m_isValidBBox = false;
//if (e->m_s->isSelfLoop())
// assert(m_imp->m_edge.size()==1);
}
//-----------------------------------------------------------------------------
TEdge *TRegion::getLastEdge() const
{
if (m_imp->m_edge.empty())
return 0;
return m_imp->m_edge.back();
}
//-----------------------------------------------------------------------------
TEdge *TRegion::popBackEdge()
{
TEdge *ret;
if (m_imp->m_edge.empty())
return 0;
ret = m_imp->m_edge.back();
m_imp->m_edge.pop_back();
return ret;
}
//-----------------------------------------------------------------------------
TEdge *TRegion::popFrontEdge()
{
TEdge *ret;
if (m_imp->m_edge.empty())
return 0;
ret = m_imp->m_edge.front();
m_imp->m_edge.erase(m_imp->m_edge.begin());
return ret;
}
//-----------------------------------------------------------------------------
TEdge *TRegion::getEdge(UINT index) const
{
return m_imp->m_edge[index];
}
//-----------------------------------------------------------------------------
UINT TRegion::getEdgeCount() const
{
return m_imp->m_edge.size();
}
//-----------------------------------------------------------------------------
TRegion *TRegion::getSubregion(UINT index) const
{
return m_imp->m_includedRegionArray[index];
}
//-----------------------------------------------------------------------------
UINT TRegion::getSubregionCount() const
{
return m_imp->m_includedRegionArray.size();
}
//-----------------------------------------------------------------------------
void TRegion::deleteSubregion(UINT index)
{
assert(m_imp->m_includedRegionArray[index]->getSubregionCount() == 0);
//delete m_imp->m_includedRegionArray[index];
m_imp->m_includedRegionArray.erase(m_imp->m_includedRegionArray.begin() + index);
}
//-----------------------------------------------------------------------------
void TRegion::moveSubregionsTo(TRegion *r)
{
while (m_imp->m_includedRegionArray.size()) {
r->m_imp->m_includedRegionArray.push_back(m_imp->m_includedRegionArray.back());
m_imp->m_includedRegionArray.pop_back();
}
}
//-----------------------------------------------------------------------------
void TRegion::Imp::printContains(const TPointD &p) const
{
std::ofstream of("C:\\temp\\region.txt");
of << "point: " << p.x << " " << p.y << std::endl;
for (UINT i = 0; i < (UINT)m_edge.size(); i++) {
for (UINT j = 0; j < (UINT)m_edge[i]->m_s->getChunkCount(); j++) {
const TThickQuadratic *q = m_edge[i]->m_s->getChunk(j);
of << "******quad # " << j << std::endl;
of << " p0 " << q->getP0() << std::endl;
of << " p1 " << q->getP1() << std::endl;
of << " p2 " << q->getP2() << std::endl;
of << "****** " << std::endl;
}
}
of << std::endl;
}
//-----------------------------------------------------------------------------
void TRegion::print()
{
std::cout << "\nNum edges: " << getEdgeCount() << std::endl;
for (UINT i = 0; i < getEdgeCount(); i++) {
std::cout << "\nEdge #" << i;
std::cout << ":P0(" << getEdge(i)->m_s->getChunk(0)->getP0().x << "," << getEdge(i)->m_s->getChunk(0)->getP0().y << ")";
std::cout << ":P2(" << getEdge(i)->m_s->getChunk(getEdge(i)->m_s->getChunkCount() - 1)->getP2().x << "," << getEdge(i)->m_s->getChunk(getEdge(i)->m_s->getChunkCount() - 1)->getP2().y << ")";
std::cout << std::endl;
}
if (m_imp->m_includedRegionArray.size()) {
std::cout << "***** questa regione contiene:" << std::endl;
for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
m_imp->m_includedRegionArray[i]->print();
std::cout << "***** fine" << std::endl;
}
}
//-----------------------------------------------------------------------------
void TRegion::setStyle(int colorStyle)
{
for (UINT i = 0; i < getEdgeCount(); i++)
getEdge(i)->setStyle(colorStyle);
/*
if (!colorStyle || (colorStyle && colorStyle->isFillStyle()) )
{
for (UINT i=0; i<getEdgeCount(); i++)
getEdge(i)->setColorStyle(colorStyle);
delete m_imp->m_prop;
m_imp->m_prop = 0;
}
*/
}
//-----------------------------------------------------------------------------
TRegionId TRegion::getId()
{
assert(getEdgeCount() > 0);
TEdge *edge;
for (UINT i = 0; i < m_imp->m_edge.size(); i++)
if (m_imp->m_edge[i]->m_index >= 0) {
edge = m_imp->m_edge[i];
return TRegionId(edge->m_s->getId(),
(float)((edge->m_w0 + edge->m_w1) * 0.5), edge->m_w0 < edge->m_w1);
}
edge = m_imp->m_edge[0];
return TRegionId(edge->m_s->getId(),
(float)((edge->m_w0 + edge->m_w1) * 0.5), edge->m_w0 < edge->m_w1);
}
//-----------------------------------------------------------------------------
void TRegion::invalidateProp()
{
if (m_imp->m_prop)
m_imp->m_prop->notifyRegionChange();
}
//-----------------------------------------------------------------------------
int TRegion::getStyle() const
{
int ret = 0;
UINT i = 0, j, n = getEdgeCount();
for (; i < n; i++) {
int styleId = getEdge(i)->getStyle();
if (styleId != 0 && ret == 0) {
//assert(styleId<100);
ret = styleId;
if (i > 0)
for (j = 0; j < i; j++)
getEdge(i)->setStyle(ret);
} else if (styleId != ret)
getEdge(i)->setStyle(ret);
}
return ret;
}
//-----------------------------------------------------------------------------
void TRegion::addSubregion(TRegion *region)
{
m_imp->addSubregion(region);
}
void TRegion::Imp::addSubregion(TRegion *region)
{
for (std::vector<TRegion *>::iterator it = m_includedRegionArray.begin(); it != m_includedRegionArray.end(); ++it) {
if (region->contains(**it)) {
//region->addSubregion(*it);
region->addSubregion(*it);
it = m_includedRegionArray.erase(it);
while (it != m_includedRegionArray.end()) {
if (region->contains(**it)) {
region->addSubregion(*it);
//region->addSubregion(*it);
it = m_includedRegionArray.erase(it);
} else
it++;
}
m_includedRegionArray.push_back(region);
return;
} else if ((*it)->contains(*region)) {
(*it)->addSubregion(region);
//(*it)->addSubregion(region);
return;
}
}
m_includedRegionArray.push_back(region);
}
//-----------------------------------------------------------------------------
// End Of File
//-----------------------------------------------------------------------------