Blob Blame Raw


#include "tregion.h"

// TnzCore includes
#include "tregionprop.h"
#include "tcurves.h"
#include "tstroke.h"
#include "tcurveutil.h"

// tcg includes
#include "tcg/numeric_ops.h"
#include "tcg/poly_ops.h"

// STD includes
#include <set>

//DEFINE_CLASS_CODE(TEdge, 40)

//=============================================================================
/*
void foo()
{
  TEdgeP p1 = new TEdge();
  TEdgeP p2 = new TEdge(*p1);
  p1 = 0;

  TEdge *e = new TEdge;

  

}
*/

//=============================================================================

bool compareEdge(const TEdge &a,
				 const TEdge &b)
{
	return a.m_s == b.m_s;
}

//-----------------------------------------------------------------------------

class TRegion::Imp
{
	double m_polyStep;

public:
	TRegionProp *m_prop;

	mutable TRectD m_bBox;
	mutable bool m_isValidBBox;

	std::vector<TEdge *> m_edge;
	std::vector<TRegion *> m_includedRegionArray;

public:
	Imp()
		: m_polyStep(-1), m_prop(0), m_bBox(), m_isValidBBox(true), m_edge(), m_includedRegionArray() {}

	~Imp()
	{
		delete m_prop;
		for (UINT i = 0; i < m_includedRegionArray.size(); i++)
			delete m_includedRegionArray[i];
	}

	void printContains(const TPointD &p) const;

	void invalidateBBox() { m_isValidBBox = false; }

#ifdef _DEBUG
	void checkRegion()
	{
		for (UINT i = 0; i < m_edge.size(); i++) {
			TEdge *e = m_edge[i];
			assert(e->getStyle() >= 0 && e->getStyle() <= 1000);
			assert(e->m_w0 >= 0 && e->m_w1 <= 1);
			assert(e->m_s->getChunkCount() >= 0 && e->m_s->getChunkCount() <= 10000);
		}
	}
#endif

	TRectD getBBox() const
	{
		if (!m_isValidBBox) {
			m_bBox = TRectD();

			for (UINT i = 0; i < m_edge.size(); i++)
				m_bBox += m_edge[i]->m_s->getBBox(std::min(m_edge[i]->m_w0, m_edge[i]->m_w1),
												  std::max(m_edge[i]->m_w0, m_edge[i]->m_w1));

			m_isValidBBox = true;
		}
		return m_bBox;
	}

	bool contains(const TPointD &p) const;
	bool contains(const TRegion::Imp &p) const;

	//this function returns true only if p is contained in the region, taking into account holes in it.
	bool noSubregionContains(const TPointD &p) const;
	void addSubregion(TRegion *region);
	// bool getPointInside(TPointD &p) const;
	bool slowContains(const TRegion::Imp &r) const;
	bool contains(const TStroke &s, bool mayIntersect) const;
	bool isSubRegionOf(const TRegion::Imp &r) const;
	bool getInternalPoint(TPointD &p, double left, double right, double y);
	void computeScanlineIntersections(double y, std::vector<double> &intersections) const;
	bool thereAreintersections(const TStroke &s) const;

	int leftScanlineIntersections(const TPointD &p,
								  double(TPointD::*h), double(TPointD::*v)) const;
};

//=============================================================================

TRegion *TRegion::findRegion(const TRegion &r) const
{
	if (areAlmostEqual(r.getBBox(), getBBox(), 1e-3))
		return (TRegion *)this;

	if (!getBBox().contains(r.getBBox()))
		return 0;
	TRegion *ret;

	for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
		if ((ret = m_imp->m_includedRegionArray[i]->findRegion(r)) != 0)
			return ret;

	return 0;
}

//=============================================================================

TRegion::TRegion()
	: m_imp(new TRegion::Imp())
{
	//m_imp->m_fillStyle->setRegion(this);
}

//-----------------------------------------------------------------------------

TRegion::~TRegion()
{
}

//-----------------------------------------------------------------------------
/*
bool TRegion::Imp::contains(const TPointD &p) const
{  
  bool leftIntersectionsAreOdd=false, rightIntersectionsAreOdd=false;
  
  if (!getBBox().contains(p))
    return false;
  
  vector<TPointD> poly;
  UINT i=0 ;
  //region2polyline(poly, *this);
   
  for(; i<m_edge.size(); i++)
    stroke2polyline( poly, *m_edge[i]->m_s, 1.0, m_edge[i]->m_w0, m_edge[i]->m_w1); 
  
  poly.push_back(poly.front());

  TRectD bbox = getBBox();

  double dist = (bbox.x1-bbox.x0)*0.5;
  
  TSegment horizSegment = TSegment(TPointD(bbox.x0-dist, p.y),TPointD(bbox.x1+dist, p.y));
  
  for (i=0; i<poly.size()-1; i++)
  {
    vector<DoublePair> intersections;
    
    if (poly[i].y==poly[i+1].y && poly[i+1].y==p.y)
      continue;
    
    if (intersect(TSegment(poly[i], poly[i+1]), horizSegment, 
      intersections))
    {
      assert(intersections.size()==1);
      
      TPointD pInt = horizSegment.getPoint(intersections[0].second);
      if (pInt==poly[i+1])
        continue;
      if (pInt.x>p.x)
        rightIntersectionsAreOdd = !rightIntersectionsAreOdd;
      else
        leftIntersectionsAreOdd = !leftIntersectionsAreOdd;
    }
  }
  
  
  //assert(!(leftIntersectionsAreOdd^rightIntersectionsAreOdd)); //intersections must be even!
  
  return leftIntersectionsAreOdd;
}
*/
//-----------------------------------------------------------------------------

//questa funzione fa l'intersezione della porzione [t0, t1) della quadratica q
// con una retta orizzontale passante per p.y,
//e setta i due booleani in base a quante intersezioni stanno a sx e a dx di p

//il valore di ritorno dice se l'intersezione e' ad un estremo e se la curva
//sta tutta sopra(1) o tutta sotto) -1;
//questo valore viene riusato come input della successiva chiamata a findSide:
//se anche questa ha l'intersezione allo stesso estremo e sullo stesso
//lato (cuspide) quell'intersezione non conta(doppia, come con la tangente)

//-----------------------------------------------------------------------------

namespace
{

inline int computeSide(const TQuadratic &q, double t, bool forward)
{
	double speedY = q.getSpeedY(t);
	if (speedY == 0)																			//se la tangente e' zero, non si riesce a capire su che semipiano sta la curva rispetto alla semiretta orizzontale campione. in questo caso e' sufficiente vedere dove giace il terzo controlpoint della quad .
		speedY = (forward ? (q.getP2().y - q.getPoint(t).y) : (q.getPoint(t).y - q.getP0().y)); //q.getSpeedY(t+(forward?0.00001:-0.00001));
	return speedY > 0 ? 1 : -1;
}

inline void computeIntersection(const TQuadratic &q, double t, double t0, double t1, double x, int sideOfPrevious, bool &leftAreOdd)
{
	if (((t0 < t1 && t >= t0 && t < t1) || (t0 > t1 && t > t1 && t <= t0)) && q.getX(t) <= x) {

		if (t == t0) {
			assert(sideOfPrevious != 0);
			if (computeSide(q, t0, t0 < t1) != sideOfPrevious) //cuspide! non considero l'intersezione
				return;
		}
		leftAreOdd = !leftAreOdd;
	}
}

//-----------------------------------------------------------------------------

__inline int findSides(const TPointD &p, const TQuadratic &q, double t0, double t1, bool &leftAreOdd, int sideOfPrevious)
{
	TRectD bbox = q.getBBox();

	//assert(!(t0==t1 && q.getPoint(t0).y==p.y));

	if (bbox.y0 > p.y || bbox.y1 < p.y)
		return 0;

	if (t0 == t1)
		return sideOfPrevious;

	double y0 = q.getP0().y;
	double y1 = q.getP1().y;
	double y2 = q.getP2().y;

	/* ottimizzazione....lenta.
if((q.getPoint(t0).y-p.y)*(q.getPoint(t1).y-p.y)<0)
  {
	 if(bbox.x1<p.x) {leftAreOdd = !leftAreOdd; return; }
	 else if(bbox.x0>p.x) {rightAreOdd = !rightAreOdd; return; }
	}
*/

	double det;
	double alfa = y0 - 2 * y1 + y2;

	if (!areAlmostEqual(alfa, 0, 1e-10)) //alfa, il coefficiente di t^2, non e' zero: due soluzioni
	{
		det = y1 * y1 - y0 * y2 + p.y * alfa;
		if (det < 0 || (det == 0 && y0 != p.y && y2 != p.y)) // con det<0 no soluzioni reali o due soluzioni coincidenti
															 // (a meno che le soluzioni non siano agli estremi, in quel caso e'
															 //  una sola!), due intersezioni stesso lato, posso scartare
			return 0;
		else {
			double ta, tb;
			det = sqrt(det);
			ta = tb = (y0 - y1 + det) / alfa;
			computeIntersection(q, ta, t0, t1, p.x, sideOfPrevious, leftAreOdd);

			if (det != 0) {
				tb = (y0 - y1 - det) / alfa;
				computeIntersection(q, tb, t0, t1, p.x, sideOfPrevious, leftAreOdd);
			}

			if (ta == t1 || tb == t1)
				return computeSide(q, t1, t1 < t0); //q.getSpeedY(t1)>0?1:-1;
			else
				return 0;
		}
	} else //alfa, il coefficiente di t^2 e' zero: una  sola soluzione
	{
		if (y2 == y0) //segmento orizzontale
			return sideOfPrevious;
		double t = (p.y - y0) / (y2 - y0);

		if ((t0 < t1 && t >= t0 && t < t1) || (t0 > t1 && t > t1 && t <= t0)) {
			if ((q.getP2().x - q.getP0().x) * t + q.getP0().x <= p.x) {
				leftAreOdd = !leftAreOdd;
				if (t == t0) {
					assert(sideOfPrevious != 0);
					if (((y2 - y0 > 0) ? 1 : -1) != sideOfPrevious)
						leftAreOdd = !leftAreOdd;
				}
			}
		}
		if (t == t1)
			return (y2 - y0 > 0) ? 1 : -1; //q.getPoint(t0).y>p.y?1:-1;
		else
			return 0;
	}
}

//-----------------------------------------------------------------------------

void addIntersection(const TQuadratic &q, double t, double t0, double t1, std::vector<double> &intersections, double intersection, std::vector<int> &sides)
{
	int side = 0;

	if (areAlmostEqual(t, t0, 1e-4))
		side = (q.getPoint(t0 + ((t1 > t0) ? 0.01 : -0.01)).y - q.getPoint(t0).y) > 0 ? 1 : -1;
	else if (areAlmostEqual(t, t1, 1e-4))
		side = (q.getPoint(t1 + ((t0 > t1) ? 0.01 : -0.01)).y - q.getPoint(t1).y) > 0 ? 1 : -1;

	if (!intersections.empty() && areAlmostEqual(intersection, intersections.back(), 1e-4)) {
		//assert(areAlmostEqual(t, t0, 1e-3));
		assert(sides.back() != 0);

		if (side == sides.back()) {
			intersections.pop_back();
			sides.pop_back();
		}
	} else {
		intersections.push_back(intersection);
		sides.push_back(side);
	}
}

//-----------------------------------------------------------------------------

void findIntersections(double y, const TQuadratic &q, double t0, double t1, std::vector<double> &intersections,
					   std::vector<int> &sides)
{

	TRectD bbox = q.getBBox();

	int side = 0;
	if (t0 == t1 || bbox.y0 > y || bbox.y1 < y)
		return;

	double y0 = q.getP0().y;
	double y1 = q.getP1().y;
	double y2 = q.getP2().y;

	double alfa = y0 - 2 * y1 + y2;

	if (!areAlmostEqual(alfa, 0, 1e-10)) //la quadratica non e' un segmento
	{

		double det = y1 * y1 - y0 * y2 + y * alfa;
		assert(det >= 0);

		if (det < 1e-6) // con det==0 soluzioni coincidenti
		{
			double t = (y0 - y1) / alfa;
			if (areAlmostEqual(t, t0, 1e-5) || areAlmostEqual(t, t1, 1e-5)) {
				double s = 1 - t;
				double intersection = q.getP0().x * s * s + 2 * t * s * q.getP1().x + t * t * q.getP2().x;
				addIntersection(q, t, t0, t1, intersections, intersection, sides);
			}
		} else {
			double ta, tb;
			bool rev = q.getPoint(t0).x > q.getPoint(t1).x;
			//if (alfa<0) rev = !rev;

			det = sqrt(det);

			ta = (y0 - y1 + det) / alfa;
			double sa = 1 - ta;
			double intersectiona = q.getP0().x * sa * sa + 2 * ta * sa * q.getP1().x + ta * ta * q.getP2().x;

			tb = (y0 - y1 - det) / alfa;
			double sb = 1 - tb;
			double intersectionb = q.getP0().x * sb * sb + 2 * tb * sb * q.getP1().x + tb * tb * q.getP2().x;

			if ((rev && intersectiona < intersectionb) || (!rev && intersectiona > intersectionb))
				tswap(intersectiona, intersectionb), tswap(ta, tb);

			if ((t0 < t1 && ta >= t0 && ta <= t1) || (t0 >= t1 && ta >= t1 && ta <= t0))
				addIntersection(q, ta, t0, t1, intersections, intersectiona, sides);

			if ((t0 < t1 && tb >= t0 && tb <= t1) || (t0 >= t1 && tb >= t1 && tb <= t0))
				addIntersection(q, tb, t0, t1, intersections, intersectionb, sides);
		}
	} else if (y2 != y0) //la quadratica e' un segmento non orizzontale
	{
		if (y2 == y0)
			return;
		double t = (y - y0) / (y2 - y0);

		if (!((t0 < t1 && t >= t0 && t <= t1) || (t0 >= t1 && t >= t1 && t <= t0)))
			return;

		double intersection = (q.getP2().x - q.getP0().x) * t + q.getP0().x;
		if (areAlmostEqual(t, t1, 1e-4))
			side = (q.getPoint(t0).y > q.getPoint(t1).y) ? 1 : -1;
		else if (areAlmostEqual(t, t0, 1e-4))
			side = (q.getPoint(t1).y > q.getPoint(t0).y) ? 1 : -1;
		if (!intersections.empty() && areAlmostEqual(intersection, intersections.back(), 1e-4)) {
			//assert(areAlmostEqual(t, t0, 1e-4));
			assert(sides.back() != 0);
			assert(side != 0);
			if (side == sides.back()) {
				intersections.pop_back();
				sides.pop_back();
			}
		} else {
			intersections.push_back(intersection);
			sides.push_back(side);
		}

	} else //la quadratica e' un segmento orizzontale
		findIntersections(y, TQuadratic(q.getPoint(t0), 0.5 * (q.getPoint(t0) + q.getPoint(t1)) + TPointD(0, 1.0), q.getPoint(t1)), 0, 1, intersections, sides);
}
}
//-----------------------------------------------------------------------------

bool TRegion::contains(const TPointD &p) const
{

	return m_imp->contains(p);
}

//-----------------------------------------------------------------------------

bool TRegion::contains(const TStroke &s, bool mayIntersect) const
{

	return m_imp->contains(s, mayIntersect);
}

//-----------------------------------------------------------------------------
#ifdef _DEBUG
void TRegion::checkRegion()
{
	m_imp->checkRegion();
}
#endif
//-----------------------------------------------------------------------------

bool TRegion::contains(const TRegion &r) const
{
	return m_imp->contains(*r.m_imp);
}

//-----------------------------------------------------------------------------
/*
bool TRegion::getPointInside(TPointD &p) const
{
  return m_imp->getPointInside(p);
}
*/
//-----------------------------------------------------------------------------

TRegionProp *TRegion::getProp()
{
	//if(m_working)  buttato m_working
	return m_imp->m_prop;
	/*
  int styleId = getStyle();
  if(!styleId ) return 0;
  TColorStyle * style = palette->getStyle(styleId); 
  if (!style->isRegionStyle() || style->isEnabled() == false)
    return 0;
  if( !m_imp->m_prop || style != m_imp->m_prop->getColorStyle() )
  {
    delete m_imp->m_prop;     
    m_imp->m_prop = style->makeRegionProp(this);
  }
  return m_imp->m_prop;
*/
}

//-----------------------------------------------------------------------------

void TRegion::setProp(TRegionProp *prop)
{
	assert(prop);
	delete m_imp->m_prop;
	m_imp->m_prop = prop;
}

//-----------------------------------------------------------------------------

/*
void TRegion::draw(const TVectorRenderData &rd)
{

  int styleId = getStyle();

  if(!styleId )
    return;

  TColorStyle * style = rd.m_palette->getStyle(styleId);
 
  if (!style->isRegionStyle() || style->isEnabled() == false)
    return;
     

  if( !m_imp->m_prop || style != m_imp->m_prop->getColorStyle() )
  {
    delete m_imp->m_prop;     
    m_imp->m_prop = style->makeRegionProp(this);
  }

  m_imp->m_prop->draw(rd);
}
*/

//-----------------------------------------------------------------------------

void checkPolyline(const std::vector<T3DPointD> &p)
{
	int ret;

	if (p.size() < 3)
		return;

	TPointD p1;
	TPointD p2;

	int pointSize = (int)p.size() - 1;

	for (int i = 0; i < pointSize; i++) {
		for (int j = i + 1; j < pointSize; j++) {
			std::vector<DoublePair> res;

			p1 = TPointD(p[i].x, p[i].y);
			p2 = TPointD(p[i + 1].x, p[i + 1].y);

			TSegment s0(p1, p2);

			p1 = TPointD(p[j].x, p[j].y);
			p2 = TPointD(p[j + 1].x, p[j + 1].y);

			TSegment s1(p1, p2);

			ret = intersect(s0, s1, res);
			if (ret)
				assert(
					(ret == 1) &&
					(areAlmostEqual(res[0].first, 1) ||
					 areAlmostEqual(res[0].first, 0)) &&
					(areAlmostEqual(res[0].second, 1) ||
					 areAlmostEqual(res[0].second, 0)));
		}
	}

	p1 = TPointD(p.back().x, p.back().y);
	p2 = TPointD(p[0].x, p[0].y);

	TSegment s0(p1, p2);

	for (int j = 0; j < pointSize; j++) {
		std::vector<DoublePair> res;

		p1 = TPointD(p[j].x, p[j].y);
		p2 = TPointD(p[j + 1].x, p[j + 1].y);
		TSegment s1(p1, p2);

		ret = intersect(s0, s1, res);
		if (ret)
			assert(
				(ret == 1) &&
				(areAlmostEqual(res[0].first, 1) ||
				 areAlmostEqual(res[0].first, 0)) &&
				(areAlmostEqual(res[0].second, 1) ||
				 areAlmostEqual(res[0].second, 0)));
	}
}

//-----------------------------------------------------------------------------

bool TRegion::Imp::getInternalPoint(TPointD &p, double left, double right, double y)
{
	assert(left < right);

	if (areAlmostEqual(left, right, 1e-2))
		return false;

	double mid = 0.5 * (left + right);

	p = TPointD(mid, y);

	if (noSubregionContains(p))
		return true;

	if (!getInternalPoint(p, left, mid, y))
		return getInternalPoint(p, mid, right, y);
	else
		return true;
}

//-----------------------------------------------------------------------------

bool TRegion::Imp::noSubregionContains(const TPointD &p) const
{

	if (contains(p)) {
		for (int i = 0; i < (int)m_includedRegionArray.size(); i++)
			if (m_includedRegionArray[i]->contains(p))
				return false;
		return true;
	} else
		return false;
}

//-----------------------------------------------------------------------------

void TRegion::computeScanlineIntersections(double y, std::vector<double> &intersections) const
{
	m_imp->computeScanlineIntersections(y, intersections);
}

//-----------------------------------------------------------------------------

void TRegion::Imp::computeScanlineIntersections(double y, std::vector<double> &intersections) const
{
	TRectD bbox = getBBox();
	if (y <= bbox.y0 || y >= bbox.y1)
		return;

	assert(intersections.empty());

	UINT i, firstSide = 0;
	std::vector<int> sides;

	for (i = 0; i < m_edge.size(); i++) {
		TEdge *e = m_edge[i];

		TStroke *s = e->m_s;
		if (s->getBBox().y0 > y || s->getBBox().y1 < y)
			continue;
		int chunkIndex0, chunkIndex1;
		double t0, t1;
		s->getChunkAndT(e->m_w0, chunkIndex0, t0);
		s->getChunkAndT(e->m_w1, chunkIndex1, t1);

		if (chunkIndex0 > chunkIndex1) {
			findIntersections(y, *s->getChunk(chunkIndex0), t0, 0, intersections, sides);
			for (int j = chunkIndex0 - 1; j > chunkIndex1; j--)
				findIntersections(y, *s->getChunk(j), 1, 0, intersections, sides);
			findIntersections(y, *s->getChunk(chunkIndex1), 1, t1, intersections, sides);
		} else if (chunkIndex0 < chunkIndex1) {
			findIntersections(y, *s->getChunk(chunkIndex0), t0, 1, intersections, sides);
			for (int j = chunkIndex0 + 1; j < chunkIndex1; j++)
				findIntersections(y, *s->getChunk(j), 0, 1, intersections, sides);
			findIntersections(y, *s->getChunk(chunkIndex1), 0, t1, intersections, sides);
		} else {
			findIntersections(y, *s->getChunk(chunkIndex0), t0, t1, intersections, sides);
		}
	}

	if (intersections.size() > 0 && intersections.front() == intersections.back()) {
		intersections.pop_back();
		if (!sides.empty() && sides.front() == sides.back() && intersections.size() > 0)
			intersections.erase(intersections.begin());
	}

	std::sort(intersections.begin(), intersections.end());
	assert(intersections.size() % 2 == 0);
}

//-----------------------------------------------------------------------------
bool TRegion::Imp::contains(const TPointD &p) const
{
	bool leftAreOdd = false;

	if (!getBBox().contains(p))
		return false;

	//printContains(p);

	UINT i;

	int side = 0;

	for (i = 0; i < m_edge.size() * 2; i++) //i pari, esplora gli edge,
											//i dispari esplora i segmenti di autoclose tra un edge e il successivo
	{
		if (i & 0x1) {
			TPointD p0 = m_edge[i / 2]->m_s->getPoint(m_edge[i / 2]->m_w1);
			TPointD p1;
			if (i / 2 < m_edge.size() - 1)
				p1 = m_edge[i / 2 + 1]->m_s->getPoint(m_edge[i / 2 + 1]->m_w0);
			else
				p1 = m_edge[0]->m_s->getPoint(m_edge[0]->m_w0);

			if (std::min(p0.y, p1.y) > p.y || std::max(p0.y, p1.y) < p.y)
				continue;

			if (!areAlmostEqual(p0, p1, 1e-2))
				side = findSides(p, TQuadratic(p0, 0.5 * (p0 + p1), p1), 0.0, 1.0, leftAreOdd, side);

			continue;
		}

		TEdge *e = m_edge[i / 2];

		TStroke *s = e->m_s;
		if (s->getBBox().y0 > p.y || s->getBBox().y1 < p.y)
			continue;

		double t0, t1;
		int chunkIndex0, chunkIndex1;
		const TThickQuadratic *q0, *q1;

		s->getChunkAndT(e->m_w0, chunkIndex0, t0);
		s->getChunkAndT(e->m_w1, chunkIndex1, t1);
		q0 = s->getChunk(chunkIndex0);
		q1 = s->getChunk(chunkIndex1);

		if (i == 0 && areAlmostEqual(q0->getPoint(t0).y, p.y)) {
			double tEnd;
			int chunkIndexEnd;
			TEdge *edgeEnd = m_edge.back();
			edgeEnd->m_s->getChunkAndT(edgeEnd->m_w1, chunkIndexEnd, tEnd);
			assert(areAlmostEqual(edgeEnd->m_s->getChunk(chunkIndexEnd)->getPoint(tEnd).y, p.y));
			side = edgeEnd->m_s->getChunk(chunkIndexEnd)->getSpeed(tEnd).y > 0 ? 1 : -1;
		}

		if (chunkIndex0 != chunkIndex1) {
			/*if (chunkIndex0>chunkIndex1)
		  {
		  tswap(chunkIndex0, chunkIndex1);
		  tswap(t0, t1);
      }*/
			if (chunkIndex0 > chunkIndex1) {
				side = findSides(p, *q0, t0, 0, leftAreOdd, side);
				for (int j = chunkIndex0 - 1; j > chunkIndex1; j--)
					side = findSides(p, *s->getChunk(j), 1, 0, leftAreOdd, side);
				side = findSides(p, *q1, 1, t1, leftAreOdd, side);
			} else {
				side = findSides(p, *q0, t0, 1, leftAreOdd, side);
				for (int j = chunkIndex0 + 1; j < chunkIndex1; j++)
					side = findSides(p, *s->getChunk(j), 0, 1, leftAreOdd, side);
				side = findSides(p, *q1, 0, t1, leftAreOdd, side);
			}

		} else
			side = findSides(p, *q0, t0, t1, leftAreOdd, side);

		if (i & 0x1)
			delete q0;
	}

	return leftAreOdd;
}

//-----------------------------------------------------------------------------

int TRegion::Imp::leftScanlineIntersections(
	const TPointD &p,
	double(TPointD::*h), double(TPointD::*v)) const
{
	struct Locals {
		const Imp *m_this;
		double m_x, m_y,
			m_tol;
		double TPointD::*m_h,
			TPointD::*m_v;

		inline double x(const TPointD &p) const { return p.*m_h; }
		inline double y(const TPointD &p) const { return p.*m_v; }

		inline double get(const TQuadratic &q, double t, double(TPointD::*val)) const
		{
			double one_t = 1.0 - t;
			return one_t * (one_t * q.getP0().*val + t * q.getP1().*val) + t * (one_t * q.getP1().*val + t * q.getP2().*val);
		}

		inline double getX(const TQuadratic &q, double t) const { return get(q, t, m_h); }
		inline double getY(const TQuadratic &q, double t) const { return get(q, t, m_v); }

		void getEdgeData(int e, TEdge *&ed, TStroke *&s,
						 int &chunk0, const TThickQuadratic *&q0, double &t0,
						 int &chunk1, const TThickQuadratic *&q1, double &t1) const
		{
			ed = m_this->m_edge[e];
			s = ed->m_s;

			s->getChunkAndT(ed->m_w0, chunk0, t0);
			s->getChunkAndT(ed->m_w1, chunk1, t1);

			q0 = s->getChunk(chunk0);
			q1 = s->getChunk(chunk1);
		}

		bool isInYRange(double y0, double y1) const
		{
			return (y0 <= m_y && m_y < y1)	 // Assuming the first endpoint is vertical-including,
				   || (y1 < m_y && m_y <= y0); // while the latter is not. Vertical conditions are EXACT.
		}

		bool areInYRange(const TQuadratic &q, double t0, double t1,
						 int(&solIdx)[2]) const
		{
			assert(0.0 <= t0 && t0 <= 1.0), assert(0.0 <= t1 && t1 <= 1.0);

			const TPointD &p0 = q.getP0(), &p1 = q.getP1(), &p2 = q.getP2();

			double der[2] = {y(p1) - y(p0), y(p0) - y(p1) + y(p2) - y(p1)},
				   s;

			double y0 = getY(q, t0), y1 = getY(q, t1);

			if (tcg::poly_ops::solve_1(der, &s, m_tol)) {
				if (t0 <= s && s < t1) {
					double ys = getY(q, s);

					solIdx[0] = (ys < m_y && m_y <= y0 || y0 <= m_y && m_y < ys) ? 0 : -1;
					solIdx[1] = (ys < m_y && m_y < y1 || y1 < m_y && m_y < ys) ? 1 : -1;
				} else if (t1 < s && s <= t0) {
					double ys = getY(q, s);

					solIdx[0] = (ys < m_y && m_y <= y0 || y0 <= m_y && m_y < ys) ? 1 : -1;
					solIdx[1] = (ys < m_y && m_y < y1 || y1 < m_y && m_y < ys) ? 0 : -1;
				} else {
					solIdx[0] = isInYRange(y0, y1) ? (t0 < s) ? 0 : 1
												   : -1;
					solIdx[1] = -1;
				}
			} else
				solIdx[1] = solIdx[0] = -1;

			return (solIdx[0] >= 0 || solIdx[1] >= 0);
		}

		int leftScanlineIntersections(const TSegment &seg, bool &ascending)
		{
			const TPointD &p0 = seg.getP0(), &p1 = seg.getP1();
			bool wasAscending = ascending;

			ascending = (y(p1) > y(p0)) ? true
										: (y(p1) < y(p0)) ? false
														  : (wasAscending = !ascending, ascending); // Couples with the cusp check below

			if (!isInYRange(y(p0), y(p1)))
				return 0;

			if (m_y == y(p0))
				return int(x(p0) < m_x && ascending == wasAscending); // Cusps treated here

			double y1_y0 = y(p1) - y(p0), // (x, m_y) in (p0, p1) from here on
				poly[2] = {(m_y - y(p0)) * (x(p1) - x(p0)), -y1_y0},
				   sx_x0;

			return tcg::poly_ops::solve_1(poly, &sx_x0, m_tol) ? int(sx_x0 < m_x - x(p0))
															   : int(x(p0) < m_x && x(p1) < m_x); // Almost horizontal segments are
		}																						  // flattened along the axes

		int isAscending(const TThickQuadratic &q, double t, bool forward)
		{
			double y0 = y(q.getP0()), y1 = y(q.getP1()), y2 = y(q.getP2()),
				   y1_y0 = y1 - y0, y2_y1 = y2 - y1;

			double yspeed_2 = tcg::numeric_ops::lerp(y1_y0, y2_y1, t) * (2 * int(forward) - 1),
				   yaccel = y2_y1 - y1_y0;

			return (yspeed_2 > 0.0) ? 1
									: (yspeed_2 < 0.0) ? -1
													   : tcg::numeric_ops::sign(yaccel);
		}

		int leftScanlineIntersections(const TQuadratic &q, double t0, double t1,
									  bool &ascending)
		{
			const TPointD &p0 = q.getP0(), &p1 = q.getP1(), &p2 = q.getP2();

			double y1_y0 = y(p1) - y(p0),
				   accel = y(p2) - y(p1) - y1_y0;

			// Fallback to segment case whenever we have too flat quads
			if (std::fabs(accel) < m_tol)
				return leftScanlineIntersections(TSegment(q.getPoint(t0), q.getPoint(t1)), ascending);

			// Calculate new ascension
			int ascends = isAscending(q, t1, t0 < t1);
			bool wasAscending = ascending;

			ascending = (ascends > 0) ? true
									  : (ascends < 0) ? false
													  : (wasAscending = !ascending, ascending); // Couples with the cusps check below

			// In case the y coords are not in range, quit
			int solIdx[2];
			if (!areInYRange(q, t0, t1, solIdx))
				return 0;

			// Identify coordinates for which  q(t) == y
			double poly[3] = {y(p0) - m_y, 2.0 * y1_y0, accel},
				   s[2];

			int sCount = tcg::poly_ops::solve_2(poly, s); // Tolerance dealt at the first bailout above
			if (sCount == 2) {
				// Calculate result
				int result = 0;

				if (solIdx[0] >= 0) {
					result += int(getX(q, s[solIdx[0]]) < m_x && (getY(q, t0) != m_y || ascending == wasAscending)); // Cusp check
				}

				if (solIdx[1] >= 0)
					result += int(getX(q, s[solIdx[1]]) < m_x);

				return result;
			}

			return (assert(sCount == 0), 0); // Should never happen, since m_y is in range. If it ever happens,
											 // it must be close to the extremal - so quit with no intersections.
		}

	} locals = {this, p.*h, p.*v, 1e-4, h, v};

	TEdge *ed;
	TStroke *s;
	int chunk0, chunk1;
	const TThickQuadratic *q0, *q1;
	double t0, t1;

	UINT e, eCount = m_edge.size();

	int leftInters = 0;
	bool ascending = (locals.getEdgeData(eCount - 1, ed, s, chunk0, q0, t0, chunk1, q1, t1),
					  locals.isAscending(*q1, t1, (t0 < t1)));

	for (e = 0; e != eCount; ++e) {
		// Explore current edge
		{
			// Retrieve edge data
			locals.getEdgeData(e, ed, s, chunk0, q0, t0, chunk1, q1, t1);

			// Compare edge against scanline segment
			if (chunk0 != chunk1) {
				if (chunk0 < chunk1) {
					leftInters += locals.leftScanlineIntersections(*q0, t0, 1.0, ascending);

					for (int c = chunk0 + 1; c != chunk1; ++c)
						leftInters += locals.leftScanlineIntersections(*s->getChunk(c), 0.0, 1.0, ascending);

					leftInters += locals.leftScanlineIntersections(*q1, 0.0, t1, ascending);
				} else {
					leftInters += locals.leftScanlineIntersections(*q0, t0, 0.0, ascending);

					for (int c = chunk0 - 1; c != chunk1; --c)
						leftInters += locals.leftScanlineIntersections(*s->getChunk(c), 1.0, 0.0, ascending);

					leftInters += locals.leftScanlineIntersections(*q1, 1.0, t1, ascending);
				}
			} else
				leftInters += locals.leftScanlineIntersections(*q0, t0, t1, ascending);
		}

		// Explore autoclose segment at the end of current edge
		{
			int nextE = (e + 1) % int(m_edge.size());

			const TPointD &p0 = m_edge[e]->m_s->getPoint(m_edge[e]->m_w1),
						  &p1 = m_edge[nextE]->m_s->getPoint(m_edge[nextE]->m_w0);

			leftInters += locals.leftScanlineIntersections(TSegment(p0, p1), ascending);
		}
	}

	return leftInters;
}

//-----------------------------------------------------------------------------

int TRegion::scanlineIntersectionsBefore(double x, double y, bool horizontal) const
{
	static double TPointD::*const dir[2] = {&TPointD::x, &TPointD::y};
	return m_imp->leftScanlineIntersections(TPointD(x, y), dir[!horizontal], dir[horizontal]);
}

//-----------------------------------------------------------------------------

bool TRegion::contains(const TEdge &e) const
{
	for (UINT i = 0; i < m_imp->m_edge.size(); i++)
		if (*m_imp->m_edge[i] == e)
			return true;

	return false;
}

// Una regione contiene un'altra se  non hanno strokes in comune e un qualsiasi punto
// della seconda e' contenuto nella prima.

bool TRegion::Imp::contains(const TRegion::Imp &r) const
{
	if (!getBBox().contains(r.getBBox()))
		return false;

	for (UINT i = 0; i < r.m_edge.size(); i++)
		for (UINT j = 0; j < m_edge.size(); j++)
			if (*r.m_edge[i] == *m_edge[j])
				return false;
	// nessuno stroke in comune!!

	/*
for ( i=0; i<r.m_edge.size(); i++)
  {
	TEdge *e = r.m_edge[i];
	if (!contains(e->m_s->getThickPoint(e->m_w0)))
	  return false;
	if (!contains(e->m_s->getThickPoint((e->m_w0+e->m_w1)/2.0)))
	  return false;
	if (!contains(e->m_s->getThickPoint(e->m_w1)))
	  return false;
	}
*/
	TEdge *e = r.m_edge[0];
	return contains(e->m_s->getThickPoint((e->m_w0 + e->m_w1) / 2.0));
}

//-----------------------------------------------------------------------------

bool TRegion::Imp::thereAreintersections(const TStroke &s) const
{
	for (UINT i = 0; i < m_edge.size(); i++) {
		std::vector<DoublePair> dummy;
		if (intersect(m_edge[i]->m_s, &s, dummy, true))
			return true;
	}

	return false;
}

//-----------------------------------------------------------------------------

bool TRegion::Imp::contains(const TStroke &s, bool mayIntersect) const
{
	if (!getBBox().contains(s.getBBox()))
		return false;
	if (mayIntersect && thereAreintersections(s))
		return false;

	return contains(s.getThickPoint(0.5));
}
//-----------------------------------------------------------------------------

bool TRegion::isSubRegionOf(const TRegion &r) const
{
	return m_imp->isSubRegionOf(*r.m_imp);
}

//-----------------------------------------------------------------------------
/*
bool TRegion::Imp::isSubRegionOf(const TRegion::Imp &r) const
{
UINT i, j;
bool found, areTouching=false;

if (!r.getBBox().contains(getBBox()))
  return false;

for (i=0; i<m_edge.size(); i++)
  {
  for (j=0, found=false; !found && j<r.m_edge.size(); j++)
    if (m_edge[i]->m_s==r.m_edge[j]->m_s)
      {
      double w0 = std::min(m_edge[i]->m_w0, m_edge[i]->m_w1) ;
      double w1 = std::max(m_edge[i]->m_w0, m_edge[i]->m_w1) ;
      double r_w0 = std::min(r.m_edge[j]->m_w0, r.m_edge[j]->m_w1);
      double r_w1 = std::max(r.m_edge[j]->m_w0, r.m_edge[j]->m_w1);

      if ((w0>=r_w0 || areAlmostEqual(w0, r_w0, 0.1)) && 
          (w1<=r_w1 || areAlmostEqual(w1, r_w1, 0.1)))
        {
        found=true;
        areTouching = true;
        }
      else
        found=false;
      //found=true;
      }
  if ((!found) && !r.contains(m_edge[i]->m_s->getPoint(0.5*(m_edge[i]->m_w0+m_edge[i]->m_w1))))
    return false;
  }
return areTouching;
}
*/
//-----------------------------------------------------------------------------

bool TRegion::Imp::isSubRegionOf(const TRegion::Imp &r) const
{
	if (!r.getBBox().contains(getBBox()))
		return false;

	for (UINT i = 0; i < m_edge.size(); i++) {
		for (UINT j = 0; j < r.m_edge.size(); j++) {
			TEdge *e = r.m_edge[j];
			TEdge *subE = m_edge[i];
			if (subE->m_index == e->m_index &&
				(subE->m_w0 < m_edge[i]->m_w1) == (e->m_w0 < e->m_w1)) {
				bool forward = (e->m_w0 < e->m_w1);

				if (forward && (subE->m_w0 >= e->m_w0 || areAlmostEqual(subE->m_w0, e->m_w0, 1e-3)) &&
					(subE->m_w1 <= e->m_w1 || areAlmostEqual(subE->m_w1, e->m_w1, 1e-3)))
					return true;

				if (!forward && (subE->m_w0 <= e->m_w0 || areAlmostEqual(subE->m_w0, e->m_w0, 1e-3)) &&
					(subE->m_w1 >= e->m_w1 || areAlmostEqual(subE->m_w1, e->m_w1, 1e-3)))
					return true;
			}
		}
	}
	return false;
}

//------------------------------------------------------------------------------
TRegion *TRegion::getRegion(const TPointD &p)
{
	for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
		if (m_imp->m_includedRegionArray[i]->contains(p))
			return m_imp->m_includedRegionArray[i]->getRegion(p);

	return this;
}

//-----------------------------------------------------------------------------

bool TRegion::getInternalPoint(TPointD &p)
{
	return m_imp->getInternalPoint(p, getBBox().x0, getBBox().x1, 0.5 * (getBBox().y0 + getBBox().y1));
}

//-----------------------------------------------------------------------------

int TRegion::fill(const TPointD &p, int styleId)
{
	UINT i;

	for (i = 0; i < m_imp->m_includedRegionArray.size(); i++)
		if (m_imp->m_includedRegionArray[i]->contains(p))
			return m_imp->m_includedRegionArray[i]->fill(p, styleId);

	int ret = getStyle();
	setStyle(styleId);

	return ret;
}

//-----------------------------------------------------------------------------

bool TRegion::selectFill(const TRectD &selArea, int styleId)
{
	bool hitSomeRegions = false;

	if (selArea.contains(getBBox())) {
		hitSomeRegions = true;
		setStyle(styleId);
	}

	int regNum = m_imp->m_includedRegionArray.size();

	for (int i = 0; i < regNum; i++)
		hitSomeRegions |= m_imp->m_includedRegionArray[i]->selectFill(selArea, styleId);

	return hitSomeRegions;
}

//-----------------------------------------------------------------------------

void TRegion::invalidateBBox()
{
	m_imp->invalidateBBox();
	for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
		m_imp->m_includedRegionArray[i]->invalidateBBox();
}

//-----------------------------------------------------------------------------
/*
TRectD TRegion::getBBox(vector<TRectD>& bboxReg,vector<TPointD>& intersPoint) const
{
  return m_imp->getBBox(bboxReg,intersPoint);
}
*/
//-----------------------------------------------------------------------------

TRectD TRegion::getBBox() const
{
	return m_imp->getBBox();
}

//-----------------------------------------------------------------------------

void TRegion::addEdge(TEdge *e, bool minimizeEdges)
{

	if (minimizeEdges &&
		e->m_s->getMaxThickness() > 0.0 && //outline strokes ignore this
		!m_imp->m_edge.empty() &&
		m_imp->m_edge.back()->m_index == e->m_index &&
		areAlmostEqual(m_imp->m_edge.back()->m_w1, e->m_w0, 1e-5))
		m_imp->m_edge.back()->m_w1 = e->m_w1;
	else
		m_imp->m_edge.push_back(e);
	m_imp->m_isValidBBox = false;
	//if (e->m_s->isSelfLoop())
	//  assert(m_imp->m_edge.size()==1);
}

//-----------------------------------------------------------------------------

TEdge *TRegion::getLastEdge() const
{
	if (m_imp->m_edge.empty())
		return 0;

	return m_imp->m_edge.back();
}

//-----------------------------------------------------------------------------

TEdge *TRegion::popBackEdge()
{
	TEdge *ret;
	if (m_imp->m_edge.empty())
		return 0;

	ret = m_imp->m_edge.back();
	m_imp->m_edge.pop_back();
	return ret;
}

//-----------------------------------------------------------------------------

TEdge *TRegion::popFrontEdge()
{
	TEdge *ret;
	if (m_imp->m_edge.empty())
		return 0;

	ret = m_imp->m_edge.front();
	m_imp->m_edge.erase(m_imp->m_edge.begin());
	return ret;
}

//-----------------------------------------------------------------------------

TEdge *TRegion::getEdge(UINT index) const
{
	return m_imp->m_edge[index];
}

//-----------------------------------------------------------------------------

UINT TRegion::getEdgeCount() const
{
	return m_imp->m_edge.size();
}

//-----------------------------------------------------------------------------

TRegion *TRegion::getSubregion(UINT index) const
{
	return m_imp->m_includedRegionArray[index];
}

//-----------------------------------------------------------------------------

UINT TRegion::getSubregionCount() const
{

	return m_imp->m_includedRegionArray.size();
}

//-----------------------------------------------------------------------------

void TRegion::deleteSubregion(UINT index)
{
	assert(m_imp->m_includedRegionArray[index]->getSubregionCount() == 0);

	//delete m_imp->m_includedRegionArray[index];
	m_imp->m_includedRegionArray.erase(m_imp->m_includedRegionArray.begin() + index);
}

//-----------------------------------------------------------------------------

void TRegion::moveSubregionsTo(TRegion *r)
{
	while (m_imp->m_includedRegionArray.size()) {
		r->m_imp->m_includedRegionArray.push_back(m_imp->m_includedRegionArray.back());
		m_imp->m_includedRegionArray.pop_back();
	}
}

//-----------------------------------------------------------------------------

void TRegion::Imp::printContains(const TPointD &p) const
{
	std::ofstream of("C:\\temp\\region.txt");

	of << "point: " << p.x << " " << p.y << std::endl;

	for (UINT i = 0; i < (UINT)m_edge.size(); i++) {
		for (UINT j = 0; j < (UINT)m_edge[i]->m_s->getChunkCount(); j++) {
			const TThickQuadratic *q = m_edge[i]->m_s->getChunk(j);

			of << "******quad # " << j << std::endl;
			of << "   p0 " << q->getP0() << std::endl;
			of << "   p1 " << q->getP1() << std::endl;
			of << "   p2 " << q->getP2() << std::endl;
			of << "****** " << std::endl;
		}
	}

	of << std::endl;
}

//-----------------------------------------------------------------------------

void TRegion::print()
{
	std::cout << "\nNum edges: " << getEdgeCount() << std::endl;
	for (UINT i = 0; i < getEdgeCount(); i++) {
		std::cout << "\nEdge #" << i;
		std::cout << ":P0(" << getEdge(i)->m_s->getChunk(0)->getP0().x << "," << getEdge(i)->m_s->getChunk(0)->getP0().y << ")";
		std::cout << ":P2(" << getEdge(i)->m_s->getChunk(getEdge(i)->m_s->getChunkCount() - 1)->getP2().x << "," << getEdge(i)->m_s->getChunk(getEdge(i)->m_s->getChunkCount() - 1)->getP2().y << ")";
		std::cout << std::endl;
	}
	if (m_imp->m_includedRegionArray.size()) {
		std::cout << "***** questa regione contiene:" << std::endl;
		for (UINT i = 0; i < m_imp->m_includedRegionArray.size(); i++)
			m_imp->m_includedRegionArray[i]->print();
		std::cout << "***** fine" << std::endl;
	}
}

//-----------------------------------------------------------------------------

void TRegion::setStyle(int colorStyle)
{

	for (UINT i = 0; i < getEdgeCount(); i++)
		getEdge(i)->setStyle(colorStyle);

	/*
  if (!colorStyle || (colorStyle && colorStyle->isFillStyle())  )
  {
    for (UINT i=0; i<getEdgeCount(); i++)
      getEdge(i)->setColorStyle(colorStyle);

    delete m_imp->m_prop;
    m_imp->m_prop = 0;
  }
  */
}

//-----------------------------------------------------------------------------

TRegionId TRegion::getId()
{
	assert(getEdgeCount() > 0);
	TEdge *edge;

	for (UINT i = 0; i < m_imp->m_edge.size(); i++)
		if (m_imp->m_edge[i]->m_index >= 0) {
			edge = m_imp->m_edge[i];
			return TRegionId(edge->m_s->getId(),
							 (float)((edge->m_w0 + edge->m_w1) * 0.5), edge->m_w0 < edge->m_w1);
		}

	edge = m_imp->m_edge[0];
	return TRegionId(edge->m_s->getId(),
					 (float)((edge->m_w0 + edge->m_w1) * 0.5), edge->m_w0 < edge->m_w1);
}

//-----------------------------------------------------------------------------

void TRegion::invalidateProp()
{
	if (m_imp->m_prop)
		m_imp->m_prop->notifyRegionChange();
}

//-----------------------------------------------------------------------------

int TRegion::getStyle() const
{
	int ret = 0;
	UINT i = 0, j, n = getEdgeCount();
	for (; i < n; i++) {
		int styleId = getEdge(i)->getStyle();
		if (styleId != 0 && ret == 0) {
			//assert(styleId<100);
			ret = styleId;
			if (i > 0)
				for (j = 0; j < i; j++)
					getEdge(i)->setStyle(ret);
		} else if (styleId != ret)
			getEdge(i)->setStyle(ret);
	}
	return ret;
}

//-----------------------------------------------------------------------------
void TRegion::addSubregion(TRegion *region)
{
	m_imp->addSubregion(region);
}

void TRegion::Imp::addSubregion(TRegion *region)
{
	for (std::vector<TRegion *>::iterator it = m_includedRegionArray.begin(); it != m_includedRegionArray.end(); ++it) {
		if (region->contains(**it)) {
			//region->addSubregion(*it);
			region->addSubregion(*it);
			it = m_includedRegionArray.erase(it);
			while (it != m_includedRegionArray.end()) {
				if (region->contains(**it)) {
					region->addSubregion(*it);
					//region->addSubregion(*it);
					it = m_includedRegionArray.erase(it);
				} else
					it++;
			}

			m_includedRegionArray.push_back(region);
			return;
		} else if ((*it)->contains(*region)) {
			(*it)->addSubregion(region);
			//(*it)->addSubregion(region);
			return;
		}
	}
	m_includedRegionArray.push_back(region);
}
//-----------------------------------------------------------------------------
//  End Of File
//-----------------------------------------------------------------------------