/*! @file zpanel_bmod.c
* \brief Performs numeric block updates
*
* <pre>
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
* </pre>
*/
/*
*/
#include <stdio.h>
#include <stdlib.h>
#include "slu_zdefs.h"
/*
* Function prototypes
*/
void zlsolve(int, int, doublecomplex *, doublecomplex *);
void zmatvec(int, int, int, doublecomplex *, doublecomplex *, doublecomplex *);
extern void zcheck_tempv();
/*! \brief
*
* <pre>
* Purpose
* =======
*
* Performs numeric block updates (sup-panel) in topological order.
* It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
* Special processing on the supernodal portion of L\U[*,j]
*
* Before entering this routine, the original nonzeros in the panel
* were already copied into the spa[m,w].
*
* Updated/Output parameters-
* dense[0:m-1,w]: L[*,j:j+w-1] and U[*,j:j+w-1] are returned
* collectively in the m-by-w vector dense[*].
* </pre>
*/
void
zpanel_bmod (
const int m, /* in - number of rows in the matrix */
const int w, /* in */
const int jcol, /* in */
const int nseg, /* in */
doublecomplex *dense, /* out, of size n by w */
doublecomplex *tempv, /* working array */
int *segrep, /* in */
int *repfnz, /* in, of size n by w */
GlobalLU_t *Glu, /* modified */
SuperLUStat_t *stat /* output */
)
{
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
_fcd ftcs1 = _cptofcd("L", strlen("L")),
ftcs2 = _cptofcd("N", strlen("N")),
ftcs3 = _cptofcd("U", strlen("U"));
#endif
int incx = 1, incy = 1;
doublecomplex alpha, beta;
#endif
register int k, ksub;
int fsupc, nsupc, nsupr, nrow;
int krep, krep_ind;
doublecomplex ukj, ukj1, ukj2;
int luptr, luptr1, luptr2;
int segsze;
int block_nrow; /* no of rows in a block row */
register int lptr; /* Points to the row subscripts of a supernode */
int kfnz, irow, no_zeros;
register int isub, isub1, i;
register int jj; /* Index through each column in the panel */
int *xsup, *supno;
int *lsub, *xlsub;
doublecomplex *lusup;
int *xlusup;
int *repfnz_col; /* repfnz[] for a column in the panel */
doublecomplex *dense_col; /* dense[] for a column in the panel */
doublecomplex *tempv1; /* Used in 1-D update */
doublecomplex *TriTmp, *MatvecTmp; /* used in 2-D update */
doublecomplex zero = {0.0, 0.0};
doublecomplex one = {1.0, 0.0};
doublecomplex comp_temp, comp_temp1;
register int ldaTmp;
register int r_ind, r_hi;
static int first = 1, maxsuper, rowblk, colblk;
flops_t *ops = stat->ops;
xsup = Glu->xsup;
supno = Glu->supno;
lsub = Glu->lsub;
xlsub = Glu->xlsub;
lusup = Glu->lusup;
xlusup = Glu->xlusup;
if ( first ) {
maxsuper = SUPERLU_MAX( sp_ienv(3), sp_ienv(7) );
rowblk = sp_ienv(4);
colblk = sp_ienv(5);
first = 0;
}
ldaTmp = maxsuper + rowblk;
/*
* For each nonz supernode segment of U[*,j] in topological order
*/
k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++) { /* for each updating supernode */
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = no of columns in a supernode
* nsupr = no of rows in a supernode
*/
krep = segrep[k--];
fsupc = xsup[supno[krep]];
nsupc = krep - fsupc + 1;
nsupr = xlsub[fsupc+1] - xlsub[fsupc];
nrow = nsupr - nsupc;
lptr = xlsub[fsupc];
krep_ind = lptr + nsupc - 1;
repfnz_col = repfnz;
dense_col = dense;
if ( nsupc >= colblk && nrow > rowblk ) { /* 2-D block update */
TriTmp = tempv;
/* Sequence through each column in panel -- triangular solves */
for (jj = jcol; jj < jcol + w; jj++,
repfnz_col += m, dense_col += m, TriTmp += ldaTmp ) {
kfnz = repfnz_col[krep];
if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
segsze = krep - kfnz + 1;
luptr = xlusup[fsupc];
ops[TRSV] += 4 * segsze * (segsze - 1);
ops[GEMV] += 8 * nrow * segsze;
/* Case 1: Update U-segment of size 1 -- col-col update */
if ( segsze == 1 ) {
ukj = dense_col[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; i++) {
irow = lsub[i];
zz_mult(&comp_temp, &ukj, &lusup[luptr]);
z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
++luptr;
}
} else if ( segsze <= 3 ) {
ukj = dense_col[lsub[krep_ind]];
ukj1 = dense_col[lsub[krep_ind - 1]];
luptr += nsupr*(nsupc-1) + nsupc-1;
luptr1 = luptr - nsupr;
if ( segsze == 2 ) {
zz_mult(&comp_temp, &ukj1, &lusup[luptr1]);
z_sub(&ukj, &ukj, &comp_temp);
dense_col[lsub[krep_ind]] = ukj;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++; luptr1++;
zz_mult(&comp_temp, &ukj, &lusup[luptr]);
zz_mult(&comp_temp1, &ukj1, &lusup[luptr1]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
}
} else {
ukj2 = dense_col[lsub[krep_ind - 2]];
luptr2 = luptr1 - nsupr;
zz_mult(&comp_temp, &ukj2, &lusup[luptr2-1]);
z_sub(&ukj1, &ukj1, &comp_temp);
zz_mult(&comp_temp, &ukj1, &lusup[luptr1]);
zz_mult(&comp_temp1, &ukj2, &lusup[luptr2]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
z_sub(&ukj, &ukj, &comp_temp);
dense_col[lsub[krep_ind]] = ukj;
dense_col[lsub[krep_ind-1]] = ukj1;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++; luptr1++; luptr2++;
zz_mult(&comp_temp, &ukj, &lusup[luptr]);
zz_mult(&comp_temp1, &ukj1, &lusup[luptr1]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
zz_mult(&comp_temp1, &ukj2, &lusup[luptr2]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
}
}
} else { /* segsze >= 4 */
/* Copy U[*,j] segment from dense[*] to TriTmp[*], which
holds the result of triangular solves. */
no_zeros = kfnz - fsupc;
isub = lptr + no_zeros;
for (i = 0; i < segsze; ++i) {
irow = lsub[isub];
TriTmp[i] = dense_col[irow]; /* Gather */
++isub;
}
/* start effective triangle */
luptr += nsupr * no_zeros + no_zeros;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
CTRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
&nsupr, TriTmp, &incx );
#else
ztrsv_( "L", "N", "U", &segsze, &lusup[luptr],
&nsupr, TriTmp, &incx );
#endif
#else
zlsolve ( nsupr, segsze, &lusup[luptr], TriTmp );
#endif
} /* else ... */
} /* for jj ... end tri-solves */
/* Block row updates; push all the way into dense[*] block */
for ( r_ind = 0; r_ind < nrow; r_ind += rowblk ) {
r_hi = SUPERLU_MIN(nrow, r_ind + rowblk);
block_nrow = SUPERLU_MIN(rowblk, r_hi - r_ind);
luptr = xlusup[fsupc] + nsupc + r_ind;
isub1 = lptr + nsupc + r_ind;
repfnz_col = repfnz;
TriTmp = tempv;
dense_col = dense;
/* Sequence through each column in panel -- matrix-vector */
for (jj = jcol; jj < jcol + w; jj++,
repfnz_col += m, dense_col += m, TriTmp += ldaTmp) {
kfnz = repfnz_col[krep];
if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
segsze = krep - kfnz + 1;
if ( segsze <= 3 ) continue; /* skip unrolled cases */
/* Perform a block update, and scatter the result of
matrix-vector to dense[]. */
no_zeros = kfnz - fsupc;
luptr1 = luptr + nsupr * no_zeros;
MatvecTmp = &TriTmp[maxsuper];
#ifdef USE_VENDOR_BLAS
alpha = one;
beta = zero;
#ifdef _CRAY
CGEMV(ftcs2, &block_nrow, &segsze, &alpha, &lusup[luptr1],
&nsupr, TriTmp, &incx, &beta, MatvecTmp, &incy);
#else
zgemv_("N", &block_nrow, &segsze, &alpha, &lusup[luptr1],
&nsupr, TriTmp, &incx, &beta, MatvecTmp, &incy);
#endif
#else
zmatvec(nsupr, block_nrow, segsze, &lusup[luptr1],
TriTmp, MatvecTmp);
#endif
/* Scatter MatvecTmp[*] into SPA dense[*] temporarily
* such that MatvecTmp[*] can be re-used for the
* the next blok row update. dense[] will be copied into
* global store after the whole panel has been finished.
*/
isub = isub1;
for (i = 0; i < block_nrow; i++) {
irow = lsub[isub];
z_sub(&dense_col[irow], &dense_col[irow],
&MatvecTmp[i]);
MatvecTmp[i] = zero;
++isub;
}
} /* for jj ... */
} /* for each block row ... */
/* Scatter the triangular solves into SPA dense[*] */
repfnz_col = repfnz;
TriTmp = tempv;
dense_col = dense;
for (jj = jcol; jj < jcol + w; jj++,
repfnz_col += m, dense_col += m, TriTmp += ldaTmp) {
kfnz = repfnz_col[krep];
if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
segsze = krep - kfnz + 1;
if ( segsze <= 3 ) continue; /* skip unrolled cases */
no_zeros = kfnz - fsupc;
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
dense_col[irow] = TriTmp[i];
TriTmp[i] = zero;
++isub;
}
} /* for jj ... */
} else { /* 1-D block modification */
/* Sequence through each column in the panel */
for (jj = jcol; jj < jcol + w; jj++,
repfnz_col += m, dense_col += m) {
kfnz = repfnz_col[krep];
if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
segsze = krep - kfnz + 1;
luptr = xlusup[fsupc];
ops[TRSV] += 4 * segsze * (segsze - 1);
ops[GEMV] += 8 * nrow * segsze;
/* Case 1: Update U-segment of size 1 -- col-col update */
if ( segsze == 1 ) {
ukj = dense_col[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; i++) {
irow = lsub[i];
zz_mult(&comp_temp, &ukj, &lusup[luptr]);
z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
++luptr;
}
} else if ( segsze <= 3 ) {
ukj = dense_col[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc-1;
ukj1 = dense_col[lsub[krep_ind - 1]];
luptr1 = luptr - nsupr;
if ( segsze == 2 ) {
zz_mult(&comp_temp, &ukj1, &lusup[luptr1]);
z_sub(&ukj, &ukj, &comp_temp);
dense_col[lsub[krep_ind]] = ukj;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
++luptr; ++luptr1;
zz_mult(&comp_temp, &ukj, &lusup[luptr]);
zz_mult(&comp_temp1, &ukj1, &lusup[luptr1]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
}
} else {
ukj2 = dense_col[lsub[krep_ind - 2]];
luptr2 = luptr1 - nsupr;
zz_mult(&comp_temp, &ukj2, &lusup[luptr2-1]);
z_sub(&ukj1, &ukj1, &comp_temp);
zz_mult(&comp_temp, &ukj1, &lusup[luptr1]);
zz_mult(&comp_temp1, &ukj2, &lusup[luptr2]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
z_sub(&ukj, &ukj, &comp_temp);
dense_col[lsub[krep_ind]] = ukj;
dense_col[lsub[krep_ind-1]] = ukj1;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
++luptr; ++luptr1; ++luptr2;
zz_mult(&comp_temp, &ukj, &lusup[luptr]);
zz_mult(&comp_temp1, &ukj1, &lusup[luptr1]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
zz_mult(&comp_temp1, &ukj2, &lusup[luptr2]);
z_add(&comp_temp, &comp_temp, &comp_temp1);
z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
}
}
} else { /* segsze >= 4 */
/*
* Perform a triangular solve and block update,
* then scatter the result of sup-col update to dense[].
*/
no_zeros = kfnz - fsupc;
/* Copy U[*,j] segment from dense[*] to tempv[*]:
* The result of triangular solve is in tempv[*];
* The result of matrix vector update is in dense_col[*]
*/
isub = lptr + no_zeros;
for (i = 0; i < segsze; ++i) {
irow = lsub[isub];
tempv[i] = dense_col[irow]; /* Gather */
++isub;
}
/* start effective triangle */
luptr += nsupr * no_zeros + no_zeros;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
CTRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#else
ztrsv_( "L", "N", "U", &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#endif
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
alpha = one;
beta = zero;
#ifdef _CRAY
CGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#else
zgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#endif
#else
zlsolve ( nsupr, segsze, &lusup[luptr], tempv );
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
zmatvec (nsupr, nrow, segsze, &lusup[luptr], tempv, tempv1);
#endif
/* Scatter tempv[*] into SPA dense[*] temporarily, such
* that tempv[*] can be used for the triangular solve of
* the next column of the panel. They will be copied into
* ucol[*] after the whole panel has been finished.
*/
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
dense_col[irow] = tempv[i];
tempv[i] = zero;
isub++;
}
/* Scatter the update from tempv1[*] into SPA dense[*] */
/* Start dense rectangular L */
for (i = 0; i < nrow; i++) {
irow = lsub[isub];
z_sub(&dense_col[irow], &dense_col[irow], &tempv1[i]);
tempv1[i] = zero;
++isub;
}
} /* else segsze>=4 ... */
} /* for each column in the panel... */
} /* else 1-D update ... */
} /* for each updating supernode ... */
}