/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static integer c__0 = 0;
static integer c__1 = 1;
/* Subroutine */ int clatmr_(integer *m, integer *n, char *dist, integer *
iseed, char *sym, complex *d, integer *mode, real *cond, complex *
dmax__, char *rsign, char *grade, complex *dl, integer *model, real *
condl, complex *dr, integer *moder, real *condr, char *pivtng,
integer *ipivot, integer *kl, integer *ku, real *sparse, real *anorm,
char *pack, complex *a, integer *lda, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
real r__1, r__2;
doublereal d__1;
complex q__1, q__2;
/* Builtin functions */
double c_abs(complex *);
void r_cnjg(complex *, complex *);
/* Local variables */
static integer isub, jsub;
static real temp;
static integer isym, i, j, k, ipack;
extern logical lsame_(char *, char *);
static real tempa[1];
static complex ctemp;
static integer iisub, idist, jjsub, mnmin;
static logical dzero;
static integer mnsub;
static real onorm;
static integer mxsub, npvts;
extern /* Subroutine */ int clatm1_(integer *, real *, integer *, integer
*, integer *, complex *, integer *, integer *);
extern /* Complex */ VOID clatm2_(complex *, integer *, integer *,
integer *, integer *, integer *, integer *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *, integer *,
real *), clatm3_(complex *, integer *, integer *, integer *,
integer *, integer *, integer *, integer *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
integer *, real *);
static complex calpha;
extern doublereal clangb_(char *, integer *, integer *, integer *,
complex *, integer *, real *), clange_(char *, integer *,
integer *, complex *, integer *, real *);
static integer igrade;
extern doublereal clansb_(char *, char *, integer *, integer *, complex *,
integer *, real *);
extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
*);
static logical fulbnd;
extern /* Subroutine */ int xerbla_(char *, integer *);
static logical badpvt;
extern doublereal clansp_(char *, char *, integer *, complex *, real *), clansy_(char *, char *, integer *, complex *,
integer *, real *);
static integer irsign, ipvtng, kll, kuu;
/* -- LAPACK test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
CLATMR generates random matrices of various types for testing
LAPACK programs.
CLATMR operates by applying the following sequence of
operations:
Generate a matrix A with random entries of distribution DIST
which is symmetric if SYM='S', Hermitian if SYM='H', and
nonsymmetric if SYM='N'.
Set the diagonal to D, where D may be input or
computed according to MODE, COND, DMAX and RSIGN
as described below.
Grade the matrix, if desired, from the left and/or right
as specified by GRADE. The inputs DL, MODEL, CONDL, DR,
MODER and CONDR also determine the grading as described
below.
Permute, if desired, the rows and/or columns as specified by
PIVTNG and IPIVOT.
Set random entries to zero, if desired, to get a random sparse
matrix as specified by SPARSE.
Make A a band matrix, if desired, by zeroing out the matrix
outside a band of lower bandwidth KL and upper bandwidth KU.
Scale A, if desired, to have maximum entry ANORM.
Pack the matrix if desired. Options specified by PACK are:
no packing
zero out upper half (if symmetric or Hermitian)
zero out lower half (if symmetric or Hermitian)
store the upper half columnwise (if symmetric or Hermitian
or square upper triangular)
store the lower half columnwise (if symmetric or Hermitian
or square lower triangular)
same as upper half rowwise if symmetric
same as conjugate upper half rowwise if Hermitian
store the lower triangle in banded format
(if symmetric or Hermitian)
store the upper triangle in banded format
(if symmetric or Hermitian)
store the entire matrix in banded format
Note: If two calls to CLATMR differ only in the PACK parameter,
they will generate mathematically equivalent matrices.
If two calls to CLATMR both have full bandwidth (KL = M-1
and KU = N-1), and differ only in the PIVTNG and PACK
parameters, then the matrices generated will differ only
in the order of the rows and/or columns, and otherwise
contain the same data. This consistency cannot be and
is not maintained with less than full bandwidth.
Arguments
=========
M - INTEGER
Number of rows of A. Not modified.
N - INTEGER
Number of columns of A. Not modified.
DIST - CHARACTER*1
On entry, DIST specifies the type of distribution to be used
to generate a random matrix .
'U' => real and imaginary parts are independent
UNIFORM( 0, 1 ) ( 'U' for uniform )
'S' => real and imaginary parts are independent
UNIFORM( -1, 1 ) ( 'S' for symmetric )
'N' => real and imaginary parts are independent
NORMAL( 0, 1 ) ( 'N' for normal )
'D' => uniform on interior of unit disk ( 'D' for disk )
Not modified.
ISEED - INTEGER array, dimension (4)
On entry ISEED specifies the seed of the random number
generator. They should lie between 0 and 4095 inclusive,
and ISEED(4) should be odd. The random number generator
uses a linear congruential sequence limited to small
integers, and so should produce machine independent
random numbers. The values of ISEED are changed on
exit, and can be used in the next call to CLATMR
to continue the same random number sequence.
Changed on exit.
SYM - CHARACTER*1
If SYM='S', generated matrix is symmetric.
If SYM='H', generated matrix is Hermitian.
If SYM='N', generated matrix is nonsymmetric.
Not modified.
D - COMPLEX array, dimension (min(M,N))
On entry this array specifies the diagonal entries
of the diagonal of A. D may either be specified
on entry, or set according to MODE and COND as described
below. If the matrix is Hermitian, the real part of D
will be taken. May be changed on exit if MODE is nonzero.
MODE - INTEGER
On entry describes how D is to be used:
MODE = 0 means use D as input
MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
MODE = 5 sets D to random numbers in the range
( 1/COND , 1 ) such that their logarithms
are uniformly distributed.
MODE = 6 set D to random numbers from same distribution
as the rest of the matrix.
MODE < 0 has the same meaning as ABS(MODE), except that
the order of the elements of D is reversed.
Thus if MODE is positive, D has entries ranging from
1 to 1/COND, if negative, from 1/COND to 1,
Not modified.
COND - REAL
On entry, used as described under MODE above.
If used, it must be >= 1. Not modified.
DMAX - COMPLEX
If MODE neither -6, 0 nor 6, the diagonal is scaled by
DMAX / max(abs(D(i))), so that maximum absolute entry
of diagonal is abs(DMAX). If DMAX is complex (or zero),
diagonal will be scaled by a complex number (or zero).
RSIGN - CHARACTER*1
If MODE neither -6, 0 nor 6, specifies sign of diagonal
as follows:
'T' => diagonal entries are multiplied by a random complex
number uniformly distributed with absolute value 1
'F' => diagonal unchanged
Not modified.
GRADE - CHARACTER*1
Specifies grading of matrix as follows:
'N' => no grading
'L' => matrix premultiplied by diag( DL )
(only if matrix nonsymmetric)
'R' => matrix postmultiplied by diag( DR )
(only if matrix nonsymmetric)
'B' => matrix premultiplied by diag( DL ) and
postmultiplied by diag( DR )
(only if matrix nonsymmetric)
'H' => matrix premultiplied by diag( DL ) and
postmultiplied by diag( CONJG(DL) )
(only if matrix Hermitian or nonsymmetric)
'S' => matrix premultiplied by diag( DL ) and
postmultiplied by diag( DL )
(only if matrix symmetric or nonsymmetric)
'E' => matrix premultiplied by diag( DL ) and
postmultiplied by inv( diag( DL ) )
( 'S' for similarity )
(only if matrix nonsymmetric)
Note: if GRADE='S', then M must equal N.
Not modified.
DL - COMPLEX array, dimension (M)
If MODEL=0, then on entry this array specifies the diagonal
entries of a diagonal matrix used as described under GRADE
above. If MODEL is not zero, then DL will be set according
to MODEL and CONDL, analogous to the way D is set according
to MODE and COND (except there is no DMAX parameter for DL).
If GRADE='E', then DL cannot have zero entries.
Not referenced if GRADE = 'N' or 'R'. Changed on exit.
MODEL - INTEGER
This specifies how the diagonal array DL is to be computed,
just as MODE specifies how D is to be computed.
Not modified.
CONDL - REAL
When MODEL is not zero, this specifies the condition number
of the computed DL. Not modified.
DR - COMPLEX array, dimension (N)
If MODER=0, then on entry this array specifies the diagonal
entries of a diagonal matrix used as described under GRADE
above. If MODER is not zero, then DR will be set according
to MODER and CONDR, analogous to the way D is set according
to MODE and COND (except there is no DMAX parameter for DR).
Not referenced if GRADE = 'N', 'L', 'H' or 'S'.
Changed on exit.
MODER - INTEGER
This specifies how the diagonal array DR is to be computed,
just as MODE specifies how D is to be computed.
Not modified.
CONDR - REAL
When MODER is not zero, this specifies the condition number
of the computed DR. Not modified.
PIVTNG - CHARACTER*1
On entry specifies pivoting permutations as follows:
'N' or ' ' => none.
'L' => left or row pivoting (matrix must be nonsymmetric).
'R' => right or column pivoting (matrix must be
nonsymmetric).
'B' or 'F' => both or full pivoting, i.e., on both sides.
In this case, M must equal N
If two calls to CLATMR both have full bandwidth (KL = M-1
and KU = N-1), and differ only in the PIVTNG and PACK
parameters, then the matrices generated will differ only
in the order of the rows and/or columns, and otherwise
contain the same data. This consistency cannot be
maintained with less than full bandwidth.
IPIVOT - INTEGER array, dimension (N or M)
This array specifies the permutation used. After the
basic matrix is generated, the rows, columns, or both
are permuted. If, say, row pivoting is selected, CLATMR
starts with the *last* row and interchanges the M-th and
IPIVOT(M)-th rows, then moves to the next-to-last row,
interchanging the (M-1)-th and the IPIVOT(M-1)-th rows,
and so on. In terms of "2-cycles", the permutation is
(1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M))
where the rightmost cycle is applied first. This is the
*inverse* of the effect of pivoting in LINPACK. The idea
is that factoring (with pivoting) an identity matrix
which has been inverse-pivoted in this way should
result in a pivot vector identical to IPIVOT.
Not referenced if PIVTNG = 'N'. Not modified.
SPARSE - REAL
On entry specifies the sparsity of the matrix if a sparse
matrix is to be generated. SPARSE should lie between
0 and 1. To generate a sparse matrix, for each matrix entry
a uniform ( 0, 1 ) random number x is generated and
compared to SPARSE; if x is larger the matrix entry
is unchanged and if x is smaller the entry is set
to zero. Thus on the average a fraction SPARSE of the
entries will be set to zero.
Not modified.
KL - INTEGER
On entry specifies the lower bandwidth of the matrix. For
example, KL=0 implies upper triangular, KL=1 implies upper
Hessenberg, and KL at least M-1 implies the matrix is not
banded. Must equal KU if matrix is symmetric or Hermitian.
Not modified.
KU - INTEGER
On entry specifies the upper bandwidth of the matrix. For
example, KU=0 implies lower triangular, KU=1 implies lower
Hessenberg, and KU at least N-1 implies the matrix is not
banded. Must equal KL if matrix is symmetric or Hermitian.
Not modified.
ANORM - REAL
On entry specifies maximum entry of output matrix
(output matrix will by multiplied by a constant so that
its largest absolute entry equal ANORM)
if ANORM is nonnegative. If ANORM is negative no scaling
is done. Not modified.
PACK - CHARACTER*1
On entry specifies packing of matrix as follows:
'N' => no packing
'U' => zero out all subdiagonal entries
(if symmetric or Hermitian)
'L' => zero out all superdiagonal entries
(if symmetric or Hermitian)
'C' => store the upper triangle columnwise
(only if matrix symmetric or Hermitian or
square upper triangular)
'R' => store the lower triangle columnwise
(only if matrix symmetric or Hermitian or
square lower triangular)
(same as upper half rowwise if symmetric)
(same as conjugate upper half rowwise if Hermitian)
'B' => store the lower triangle in band storage scheme
(only if matrix symmetric or Hermitian)
'Q' => store the upper triangle in band storage scheme
(only if matrix symmetric or Hermitian)
'Z' => store the entire matrix in band storage scheme
(pivoting can be provided for by using this
option to store A in the trailing rows of
the allocated storage)
Using these options, the various LAPACK packed and banded
storage schemes can be obtained:
GB - use 'Z'
PB, HB or TB - use 'B' or 'Q'
PP, HP or TP - use 'C' or 'R'
If two calls to CLATMR differ only in the PACK parameter,
they will generate mathematically equivalent matrices.
Not modified.
A - COMPLEX array, dimension (LDA,N)
On exit A is the desired test matrix. Only those
entries of A which are significant on output
will be referenced (even if A is in packed or band
storage format). The 'unoccupied corners' of A in
band format will be zeroed out.
LDA - INTEGER
on entry LDA specifies the first dimension of A as
declared in the calling program.
If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ).
If PACK='C' or 'R', LDA must be at least 1.
If PACK='B', or 'Q', LDA must be MIN ( KU+1, N )
If PACK='Z', LDA must be at least KUU+KLL+1, where
KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 )
Not modified.
IWORK - INTEGER array, dimension (N or M)
Workspace. Not referenced if PIVTNG = 'N'. Changed on exit.
INFO - INTEGER
Error parameter on exit:
0 => normal return
-1 => M negative or unequal to N and SYM='S' or 'H'
-2 => N negative
-3 => DIST illegal string
-5 => SYM illegal string
-7 => MODE not in range -6 to 6
-8 => COND less than 1.0, and MODE neither -6, 0 nor 6
-10 => MODE neither -6, 0 nor 6 and RSIGN illegal string
-11 => GRADE illegal string, or GRADE='E' and
M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E'
and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E'
and SYM = 'S'
-12 => GRADE = 'E' and DL contains zero
-13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H',
'S' or 'E'
-14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E',
and MODEL neither -6, 0 nor 6
-16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B'
-17 => CONDR less than 1.0, GRADE='R' or 'B', and
MODER neither -6, 0 nor 6
-18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and
M not equal to N, or PIVTNG='L' or 'R' and SYM='S'
or 'H'
-19 => IPIVOT contains out of range number and
PIVTNG not equal to 'N'
-20 => KL negative
-21 => KU negative, or SYM='S' or 'H' and KU not equal to KL
-22 => SPARSE not in range 0. to 1.
-24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q'
and SYM='N', or PACK='C' and SYM='N' and either KL
not equal to 0 or N not equal to M, or PACK='R' and
SYM='N', and either KU not equal to 0 or N not equal
to M
-26 => LDA too small
1 => Error return from CLATM1 (computing D)
2 => Cannot scale diagonal to DMAX (max. entry is 0)
3 => Error return from CLATM1 (computing DL)
4 => Error return from CLATM1 (computing DR)
5 => ANORM is positive, but matrix constructed prior to
attempting to scale it to have norm ANORM, is zero
=====================================================================
1) Decode and Test the input parameters.
Initialize flags & seed.
Parameter adjustments */
--iseed;
--d;
--dl;
--dr;
--ipivot;
a_dim1 = *lda;
a_offset = a_dim1 + 1;
a -= a_offset;
--iwork;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
/* Decode DIST */
if (lsame_(dist, "U")) {
idist = 1;
} else if (lsame_(dist, "S")) {
idist = 2;
} else if (lsame_(dist, "N")) {
idist = 3;
} else if (lsame_(dist, "D")) {
idist = 4;
} else {
idist = -1;
}
/* Decode SYM */
if (lsame_(sym, "H")) {
isym = 0;
} else if (lsame_(sym, "N")) {
isym = 1;
} else if (lsame_(sym, "S")) {
isym = 2;
} else {
isym = -1;
}
/* Decode RSIGN */
if (lsame_(rsign, "F")) {
irsign = 0;
} else if (lsame_(rsign, "T")) {
irsign = 1;
} else {
irsign = -1;
}
/* Decode PIVTNG */
if (lsame_(pivtng, "N")) {
ipvtng = 0;
} else if (lsame_(pivtng, " ")) {
ipvtng = 0;
} else if (lsame_(pivtng, "L")) {
ipvtng = 1;
npvts = *m;
} else if (lsame_(pivtng, "R")) {
ipvtng = 2;
npvts = *n;
} else if (lsame_(pivtng, "B")) {
ipvtng = 3;
npvts = min(*n,*m);
} else if (lsame_(pivtng, "F")) {
ipvtng = 3;
npvts = min(*n,*m);
} else {
ipvtng = -1;
}
/* Decode GRADE */
if (lsame_(grade, "N")) {
igrade = 0;
} else if (lsame_(grade, "L")) {
igrade = 1;
} else if (lsame_(grade, "R")) {
igrade = 2;
} else if (lsame_(grade, "B")) {
igrade = 3;
} else if (lsame_(grade, "E")) {
igrade = 4;
} else if (lsame_(grade, "H")) {
igrade = 5;
} else if (lsame_(grade, "S")) {
igrade = 6;
} else {
igrade = -1;
}
/* Decode PACK */
if (lsame_(pack, "N")) {
ipack = 0;
} else if (lsame_(pack, "U")) {
ipack = 1;
} else if (lsame_(pack, "L")) {
ipack = 2;
} else if (lsame_(pack, "C")) {
ipack = 3;
} else if (lsame_(pack, "R")) {
ipack = 4;
} else if (lsame_(pack, "B")) {
ipack = 5;
} else if (lsame_(pack, "Q")) {
ipack = 6;
} else if (lsame_(pack, "Z")) {
ipack = 7;
} else {
ipack = -1;
}
/* Set certain internal parameters */
mnmin = min(*m,*n);
/* Computing MIN */
i__1 = *kl, i__2 = *m - 1;
kll = min(i__1,i__2);
/* Computing MIN */
i__1 = *ku, i__2 = *n - 1;
kuu = min(i__1,i__2);
/* If inv(DL) is used, check to see if DL has a zero entry. */
dzero = FALSE_;
if (igrade == 4 && *model == 0) {
i__1 = *m;
for (i = 1; i <= i__1; ++i) {
i__2 = i;
if (dl[i__2].r == 0.f && dl[i__2].i == 0.f) {
dzero = TRUE_;
}
/* L10: */
}
}
/* Check values in IPIVOT */
badpvt = FALSE_;
if (ipvtng > 0) {
i__1 = npvts;
for (j = 1; j <= i__1; ++j) {
if (ipivot[j] <= 0 || ipivot[j] > npvts) {
badpvt = TRUE_;
}
/* L20: */
}
}
/* Set INFO if an error */
if (*m < 0) {
*info = -1;
} else if (*m != *n && (isym == 0 || isym == 2)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (idist == -1) {
*info = -3;
} else if (isym == -1) {
*info = -5;
} else if (*mode < -6 || *mode > 6) {
*info = -7;
} else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.f) {
*info = -8;
} else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
*info = -10;
} else if (igrade == -1 || igrade == 4 && *m != *n || (igrade == 1 ||
igrade == 2 || igrade == 3 || igrade == 4 || igrade == 6) && isym
== 0 || (igrade == 1 || igrade == 2 || igrade == 3 || igrade == 4
|| igrade == 5) && isym == 2) {
*info = -11;
} else if (igrade == 4 && dzero) {
*info = -12;
} else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 ||
igrade == 6) && (*model < -6 || *model > 6)) {
*info = -13;
} else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 ||
igrade == 6) && (*model != -6 && *model != 0 && *model != 6) && *
condl < 1.f) {
*info = -14;
} else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
*info = -16;
} else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
*moder != 6) && *condr < 1.f) {
*info = -17;
} else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 ||
ipvtng == 2) && (isym == 0 || isym == 2)) {
*info = -18;
} else if (ipvtng != 0 && badpvt) {
*info = -19;
} else if (*kl < 0) {
*info = -20;
} else if (*ku < 0 || (isym == 0 || isym == 2) && *kl != *ku) {
*info = -21;
} else if (*sparse < 0.f || *sparse > 1.f) {
*info = -22;
} else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 ||
ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0
|| *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
{
*info = -24;
} else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < max(1,*m) ||
(ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
*info = -26;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CLATMR", &i__1);
return 0;
}
/* Decide if we can pivot consistently */
fulbnd = FALSE_;
if (kuu == *n - 1 && kll == *m - 1) {
fulbnd = TRUE_;
}
/* Initialize random number generator */
for (i = 1; i <= 4; ++i) {
iseed[i] = (i__1 = iseed[i], abs(i__1)) % 4096;
/* L30: */
}
iseed[4] = (iseed[4] / 2 << 1) + 1;
/* 2) Set up D, DL, and DR, if indicated.
Compute D according to COND and MODE */
clatm1_(mode, cond, &irsign, &idist, &iseed[1], &d[1], &mnmin, info);
if (*info != 0) {
*info = 1;
return 0;
}
if (*mode != 0 && *mode != -6 && *mode != 6) {
/* Scale by DMAX */
temp = c_abs(&d[1]);
i__1 = mnmin;
for (i = 2; i <= i__1; ++i) {
/* Computing MAX */
r__1 = temp, r__2 = c_abs(&d[i]);
temp = dmax(r__1,r__2);
/* L40: */
}
if (temp == 0.f && (dmax__->r != 0.f || dmax__->i != 0.f)) {
*info = 2;
return 0;
}
if (temp != 0.f) {
q__1.r = dmax__->r / temp, q__1.i = dmax__->i / temp;
calpha.r = q__1.r, calpha.i = q__1.i;
} else {
calpha.r = 1.f, calpha.i = 0.f;
}
i__1 = mnmin;
for (i = 1; i <= i__1; ++i) {
i__2 = i;
i__3 = i;
q__1.r = calpha.r * d[i__3].r - calpha.i * d[i__3].i, q__1.i =
calpha.r * d[i__3].i + calpha.i * d[i__3].r;
d[i__2].r = q__1.r, d[i__2].i = q__1.i;
/* L50: */
}
}
/* If matrix Hermitian, make D real */
if (isym == 0) {
i__1 = mnmin;
for (i = 1; i <= i__1; ++i) {
i__2 = i;
i__3 = i;
d__1 = d[i__3].r;
d[i__2].r = d__1, d[i__2].i = 0.f;
/* L60: */
}
}
/* Compute DL if grading set */
if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || igrade ==
6) {
clatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
if (*info != 0) {
*info = 3;
return 0;
}
}
/* Compute DR if grading set */
if (igrade == 2 || igrade == 3) {
clatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
if (*info != 0) {
*info = 4;
return 0;
}
}
/* 3) Generate IWORK if pivoting */
if (ipvtng > 0) {
i__1 = npvts;
for (i = 1; i <= i__1; ++i) {
iwork[i] = i;
/* L70: */
}
if (fulbnd) {
i__1 = npvts;
for (i = 1; i <= i__1; ++i) {
k = ipivot[i];
j = iwork[i];
iwork[i] = iwork[k];
iwork[k] = j;
/* L80: */
}
} else {
for (i = npvts; i >= 1; --i) {
k = ipivot[i];
j = iwork[i];
iwork[i] = iwork[k];
iwork[k] = j;
/* L90: */
}
}
}
/* 4) Generate matrices for each kind of PACKing
Always sweep matrix columnwise (if symmetric, upper
half only) so that matrix generated does not depend
on PACK */
if (fulbnd) {
/* Use CLATM3 so matrices generated with differing PIVOTing onl
y
differ only in the order of their rows and/or columns. */
if (ipack == 0) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
i__3 = isub + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
i__3 = jsub + isub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L100: */
}
/* L110: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
i__3 = isub + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L120: */
}
/* L130: */
}
} else if (isym == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
i__3 = isub + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
i__3 = jsub + isub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L140: */
}
/* L150: */
}
}
} else if (ipack == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == isub && isym == 0) {
i__3 = mnsub + mxsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = mnsub + mxsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
if (mnsub != mxsub) {
i__3 = mxsub + mnsub * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
}
/* L160: */
}
/* L170: */
}
} else if (ipack == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == jsub && isym == 0) {
i__3 = mxsub + mnsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = mxsub + mnsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
if (mnsub != mxsub) {
i__3 = mnsub + mxsub * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
}
/* L180: */
}
/* L190: */
}
} else if (ipack == 3) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
/* Compute K = location of (ISUB,JSUB) ent
ry in packed
array */
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
k = mxsub * (mxsub - 1) / 2 + mnsub;
/* Convert K to (IISUB,JJSUB) location */
jjsub = (k - 1) / *lda + 1;
iisub = k - *lda * (jjsub - 1);
if (mxsub == isub && isym == 0) {
i__3 = iisub + jjsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = iisub + jjsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
/* L200: */
}
/* L210: */
}
} else if (ipack == 4) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
/* Compute K = location of (I,J) entry in
packed array */
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mnsub == 1) {
k = mxsub;
} else {
k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n -
mnsub + 2) / 2 + mxsub - mnsub + 1;
}
/* Convert K to (IISUB,JJSUB) location */
jjsub = (k - 1) / *lda + 1;
iisub = k - *lda * (jjsub - 1);
if (mxsub == jsub && isym == 0) {
i__3 = iisub + jjsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = iisub + jjsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
/* L220: */
}
/* L230: */
}
} else if (ipack == 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
if (i < 1) {
i__3 = j - i + 1 + (i + *n) * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
} else {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == jsub && isym == 0) {
i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
}
/* L240: */
}
/* L250: */
}
} else if (ipack == 6) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == isub && isym == 0) {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
/* L260: */
}
/* L270: */
}
} else if (ipack == 7) {
if (isym != 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (i < 1) {
i__3 = j - i + 1 + kuu + (i + *n) * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
}
if (mxsub == isub && isym == 0) {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
if (i >= 1 && mnsub != mxsub) {
if (mnsub == isub && isym == 0) {
i__3 = mxsub - mnsub + 1 + kuu + mnsub *
a_dim1;
r_cnjg(&q__1, &ctemp);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = mxsub - mnsub + 1 + kuu + mnsub *
a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
}
/* L280: */
}
/* L290: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + kll;
for (i = j - kuu; i <= i__2; ++i) {
clatm3_(&q__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = q__1.r, ctemp.i = q__1.i;
i__3 = isub - jsub + kuu + 1 + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L300: */
}
/* L310: */
}
}
}
} else {
/* Use CLATM2 */
if (ipack == 0) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
i__3 = j + i * a_dim1;
r_cnjg(&q__1, &a[i + j * a_dim1]);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L320: */
}
/* L330: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L340: */
}
/* L350: */
}
} else if (isym == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
i__3 = j + i * a_dim1;
i__4 = i + j * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
/* L360: */
}
/* L370: */
}
}
} else if (ipack == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1], &
d[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
if (i != j) {
i__3 = j + i * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
}
/* L380: */
}
/* L390: */
}
} else if (ipack == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
if (isym == 0) {
i__3 = j + i * a_dim1;
clatm2_(&q__2, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
r_cnjg(&q__1, &q__2);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = j + i * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
}
if (i != j) {
i__3 = i + j * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
}
/* L400: */
}
/* L410: */
}
} else if (ipack == 3) {
isub = 0;
jsub = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
++isub;
if (isub > *lda) {
isub = 1;
++jsub;
}
i__3 = isub + jsub * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1], &
d[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L420: */
}
/* L430: */
}
} else if (ipack == 4) {
if (isym == 0 || isym == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
/* Compute K = location of (I,J) en
try in packed array */
if (i == 1) {
k = j;
} else {
k = *n * (*n + 1) / 2 - (*n - i + 1) * (*n - i +
2) / 2 + j - i + 1;
}
/* Convert K to (ISUB,JSUB) locatio
n */
jsub = (k - 1) / *lda + 1;
isub = k - *lda * (jsub - 1);
i__3 = isub + jsub * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
if (isym == 0) {
i__3 = isub + jsub * a_dim1;
r_cnjg(&q__1, &a[isub + jsub * a_dim1]);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
}
/* L440: */
}
/* L450: */
}
} else {
isub = 0;
jsub = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i = j; i <= i__2; ++i) {
++isub;
if (isub > *lda) {
isub = 1;
++jsub;
}
i__3 = isub + jsub * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L460: */
}
/* L470: */
}
}
} else if (ipack == 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
if (i < 1) {
i__3 = j - i + 1 + (i + *n) * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
} else {
if (isym == 0) {
i__3 = j - i + 1 + i * a_dim1;
clatm2_(&q__2, m, n, &i, &j, kl, ku, &idist, &
iseed[1], &d[1], &igrade, &dl[1], &dr[1],
&ipvtng, &iwork[1], sparse);
r_cnjg(&q__1, &q__2);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = j - i + 1 + i * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &
iseed[1], &d[1], &igrade, &dl[1], &dr[1],
&ipvtng, &iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
}
}
/* L480: */
}
/* L490: */
}
} else if (ipack == 6) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
i__3 = i - j + kuu + 1 + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1], &
d[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L500: */
}
/* L510: */
}
} else if (ipack == 7) {
if (isym != 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
i__3 = i - j + kuu + 1 + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
if (i < 1) {
i__3 = j - i + 1 + kuu + (i + *n) * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
}
if (i >= 1 && i != j) {
if (isym == 0) {
i__3 = j - i + 1 + kuu + i * a_dim1;
r_cnjg(&q__1, &a[i - j + kuu + 1 + j * a_dim1]
);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
} else {
i__3 = j - i + 1 + kuu + i * a_dim1;
i__4 = i - j + kuu + 1 + j * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
}
}
/* L520: */
}
/* L530: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + kll;
for (i = j - kuu; i <= i__2; ++i) {
i__3 = i - j + kuu + 1 + j * a_dim1;
clatm2_(&q__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L540: */
}
/* L550: */
}
}
}
}
/* 5) Scaling the norm */
if (ipack == 0) {
onorm = clange_("M", m, n, &a[a_offset], lda, tempa);
} else if (ipack == 1) {
onorm = clansy_("M", "U", n, &a[a_offset], lda, tempa);
} else if (ipack == 2) {
onorm = clansy_("M", "L", n, &a[a_offset], lda, tempa);
} else if (ipack == 3) {
onorm = clansp_("M", "U", n, &a[a_offset], tempa);
} else if (ipack == 4) {
onorm = clansp_("M", "L", n, &a[a_offset], tempa);
} else if (ipack == 5) {
onorm = clansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
} else if (ipack == 6) {
onorm = clansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
} else if (ipack == 7) {
onorm = clangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
}
if (*anorm >= 0.f) {
if (*anorm > 0.f && onorm == 0.f) {
/* Desired scaling impossible */
*info = 5;
return 0;
} else if (*anorm > 1.f && onorm < 1.f || *anorm < 1.f && onorm > 1.f)
{
/* Scale carefully to avoid over / underflow */
if (ipack <= 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
r__1 = 1.f / onorm;
csscal_(m, &r__1, &a[j * a_dim1 + 1], &c__1);
csscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
/* L560: */
}
} else if (ipack == 3 || ipack == 4) {
i__1 = *n * (*n + 1) / 2;
r__1 = 1.f / onorm;
csscal_(&i__1, &r__1, &a[a_offset], &c__1);
i__1 = *n * (*n + 1) / 2;
csscal_(&i__1, anorm, &a[a_offset], &c__1);
} else if (ipack >= 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = kll + kuu + 1;
r__1 = 1.f / onorm;
csscal_(&i__2, &r__1, &a[j * a_dim1 + 1], &c__1);
i__2 = kll + kuu + 1;
csscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
/* L570: */
}
}
} else {
/* Scale straightforwardly */
if (ipack <= 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
r__1 = *anorm / onorm;
csscal_(m, &r__1, &a[j * a_dim1 + 1], &c__1);
/* L580: */
}
} else if (ipack == 3 || ipack == 4) {
i__1 = *n * (*n + 1) / 2;
r__1 = *anorm / onorm;
csscal_(&i__1, &r__1, &a[a_offset], &c__1);
} else if (ipack >= 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = kll + kuu + 1;
r__1 = *anorm / onorm;
csscal_(&i__2, &r__1, &a[j * a_dim1 + 1], &c__1);
/* L590: */
}
}
}
}
/* End of CLATMR */
return 0;
} /* clatmr_ */