/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include "common.h"
#ifndef BETA_OPERATION
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
BETA[0], BETA[1], NULL, 0, NULL, 0, \
(FLOAT *)(C) + (M_FROM) + (N_FROM) * (LDC) * COMPSIZE, LDC)
#endif
#ifndef ICOPYB_OPERATION
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
defined(RN) || defined(RT) || defined(RC) || defined(RR)
#define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
GEMM3M_ITCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
#else
#define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
GEMM3M_INCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
#endif
#endif
#ifndef ICOPYR_OPERATION
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
defined(RN) || defined(RT) || defined(RC) || defined(RR)
#define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
GEMM3M_ITCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
#else
#define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
GEMM3M_INCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
#endif
#endif
#ifndef ICOPYI_OPERATION
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
defined(RN) || defined(RT) || defined(RC) || defined(RR)
#define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
GEMM3M_ITCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
#else
#define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
GEMM3M_INCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
#endif
#endif
#ifndef OCOPYB_OPERATION
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
defined(NR) || defined(TR) || defined(CR) || defined(RR)
#define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
GEMM3M_ONCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
#else
#define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
GEMM3M_OTCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
#endif
#endif
#ifndef OCOPYR_OPERATION
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
defined(NR) || defined(TR) || defined(CR) || defined(RR)
#define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
GEMM3M_ONCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
#else
#define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
GEMM3M_OTCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
#endif
#endif
#ifndef OCOPYI_OPERATION
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
defined(NR) || defined(TR) || defined(CR) || defined(RR)
#define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
GEMM3M_ONCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
#else
#define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
GEMM3M_OTCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
#endif
#endif
#ifndef KERNEL_FUNC
#define KERNEL_FUNC GEMM3M_KERNEL
#endif
#ifndef KERNEL_OPERATION
#define KERNEL_OPERATION(M, N, K, ALPHA_R, ALPHA_I, SA, SB, C, LDC, X, Y) \
KERNEL_FUNC(M, N, K, ALPHA_R, ALPHA_I, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
#endif
#ifndef A
#define A args -> a
#endif
#ifndef LDA
#define LDA args -> lda
#endif
#ifndef B
#define B args -> b
#endif
#ifndef LDB
#define LDB args -> ldb
#endif
#ifndef C
#define C args -> c
#endif
#ifndef LDC
#define LDC args -> ldc
#endif
#ifndef M
#define M args -> m
#endif
#ifndef N
#define N args -> n
#endif
#ifndef K
#define K args -> k
#endif
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
#define ALPHA1 ONE
#define ALPHA2 ONE
#define ALPHA5 ZERO
#define ALPHA6 ONE
#define ALPHA7 ONE
#define ALPHA8 ZERO
#define ALPHA11 ONE
#define ALPHA12 -ONE
#define ALPHA13 ZERO
#define ALPHA14 ONE
#define ALPHA17 -ONE
#define ALPHA18 -ONE
#endif
#if defined(NR) || defined(NC) || defined(TR) || defined(TC)
#define ALPHA1 ONE
#define ALPHA2 ONE
#define ALPHA5 ONE
#define ALPHA6 ZERO
#define ALPHA7 ZERO
#define ALPHA8 ONE
#define ALPHA11 -ONE
#define ALPHA12 -ONE
#define ALPHA13 ONE
#define ALPHA14 ZERO
#define ALPHA17 -ONE
#define ALPHA18 ONE
#endif
#if defined(RN) || defined(RT) || defined(CN) || defined(CT)
#define ALPHA1 ONE
#define ALPHA2 ONE
#define ALPHA5 ONE
#define ALPHA6 ZERO
#define ALPHA7 ZERO
#define ALPHA8 ONE
#define ALPHA11 -ONE
#define ALPHA12 ONE
#define ALPHA13 ONE
#define ALPHA14 ZERO
#define ALPHA17 -ONE
#define ALPHA18 -ONE
#endif
#if defined(RR) || defined(RC) || defined(CR) || defined(CC)
#define ALPHA1 ONE
#define ALPHA2 ONE
#define ALPHA5 ZERO
#define ALPHA6 -ONE
#define ALPHA7 ONE
#define ALPHA8 ZERO
#define ALPHA11 ONE
#define ALPHA12 ONE
#define ALPHA13 ZERO
#define ALPHA14 ONE
#define ALPHA17 -ONE
#define ALPHA18 ONE
#endif
#ifdef TIMING
#define START_RPCC() rpcc_counter = rpcc()
#define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
#else
#define START_RPCC()
#define STOP_RPCC(COUNTER)
#endif
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
FLOAT *sa, FLOAT *sb, BLASLONG dummy){
BLASLONG k, lda, ldb, ldc;
FLOAT *alpha, *beta;
FLOAT *a, *b, *c;
BLASLONG m_from, m_to, n_from, n_to;
BLASLONG ls, is, js, jjs;
BLASLONG min_l, min_i, min_j, min_jj;
#ifdef TIMING
BLASULONG rpcc_counter;
BLASULONG BLASLONG innercost = 0;
BLASULONG BLASLONG outercost = 0;
BLASULONG BLASLONG kernelcost = 0;
double total;
#endif
k = K;
a = (FLOAT *)A;
b = (FLOAT *)B;
c = (FLOAT *)C;
lda = LDA;
ldb = LDB;
ldc = LDC;
alpha = (FLOAT *)args -> alpha;
beta = (FLOAT *)args -> beta;
m_from = 0;
m_to = M;
if (range_m) {
m_from = *(((BLASLONG *)range_m) + 0);
m_to = *(((BLASLONG *)range_m) + 1);
}
n_from = 0;
n_to = N;
if (range_n) {
n_from = *(((BLASLONG *)range_n) + 0);
n_to = *(((BLASLONG *)range_n) + 1);
}
if (beta) {
#ifndef COMPLEX
if (beta[0] != ONE)
#else
if ((beta[0] != ONE) || (beta[1] != ZERO))
#endif
BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc);
}
if ((k == 0) || (alpha == NULL)) return 0;
if ((alpha[0] == ZERO)
#ifdef COMPLEX
&& (alpha[1] == ZERO)
#endif
) return 0;
#if 0
printf("GEMM: M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k);
printf("GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM3M_P, (BLASLONG)GEMM3M_Q, (BLASLONG)GEMM3M_R);
printf("GEMM: SA .. %p SB .. %p\n", sa, sb);
#endif
#ifdef TIMING
innercost = 0;
outercost = 0;
kernelcost = 0;
#endif
for(js = n_from; js < n_to; js += GEMM3M_R){
min_j = n_to - js;
if (min_j > GEMM3M_R) min_j = GEMM3M_R;
for(ls = 0; ls < k; ls += min_l){
min_l = k - ls;
if (min_l >= GEMM3M_Q * 2) {
min_l = GEMM3M_Q;
} else {
if (min_l > GEMM3M_Q) {
min_l = (min_l + 1) / 2;
#ifdef UNROLL_X
min_l = (min_l + UNROLL_X - 1) & ~(UNROLL_X - 1);
#endif
}
}
min_i = m_to - m_from;
if (min_i >= GEMM3M_P * 2) {
min_i = GEMM3M_P;
} else {
if (min_i > GEMM3M_P) {
min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1);
}
}
START_RPCC();
ICOPYB_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
STOP_RPCC(innercost);
for(jjs = js; jjs < js + min_j; jjs += min_jj){
min_jj = min_j + js - jjs;
if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N;
START_RPCC();
#if defined(NN) || defined(NT) || defined(TN) || defined(TT) || defined(RN) || defined(RT) || defined(CN) || defined(CT)
OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
#else
OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
#endif
STOP_RPCC(outercost);
START_RPCC();
KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA5, ALPHA6,
sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
STOP_RPCC(kernelcost);
}
for(is = m_from + min_i; is < m_to; is += min_i){
min_i = m_to - is;
if (min_i >= GEMM3M_P * 2) {
min_i = GEMM3M_P;
} else
if (min_i > GEMM3M_P) {
min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1);
}
START_RPCC();
ICOPYB_OPERATION(min_l, min_i, a, lda, ls, is, sa);
STOP_RPCC(innercost);
START_RPCC();
KERNEL_OPERATION(min_i, min_j, min_l, ALPHA5, ALPHA6, sa, sb, c, ldc, is, js);
STOP_RPCC(kernelcost);
}
min_i = m_to - m_from;
if (min_i >= GEMM3M_P * 2) {
min_i = GEMM3M_P;
} else {
if (min_i > GEMM3M_P) {
min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1);
}
}
START_RPCC();
ICOPYR_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
STOP_RPCC(innercost);
for(jjs = js; jjs < js + min_j; jjs += min_jj){
min_jj = min_j + js - jjs;
if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N;
START_RPCC();
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
#elif defined(RR) || defined(RC) || defined(CR) || defined(CC)
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
#elif defined(RN) || defined(RT) || defined(CN) || defined(CT)
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
#else
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
#endif
STOP_RPCC(outercost);
START_RPCC();
KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA11, ALPHA12,
sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
STOP_RPCC(kernelcost);
}
for(is = m_from + min_i; is < m_to; is += min_i){
min_i = m_to - is;
if (min_i >= GEMM3M_P * 2) {
min_i = GEMM3M_P;
} else
if (min_i > GEMM3M_P) {
min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1);
}
START_RPCC();
ICOPYR_OPERATION(min_l, min_i, a, lda, ls, is, sa);
STOP_RPCC(innercost);
START_RPCC();
KERNEL_OPERATION(min_i, min_j, min_l, ALPHA11, ALPHA12, sa, sb, c, ldc, is, js);
STOP_RPCC(kernelcost);
}
min_i = m_to - m_from;
if (min_i >= GEMM3M_P * 2) {
min_i = GEMM3M_P;
} else {
if (min_i > GEMM3M_P) {
min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1);
}
}
START_RPCC();
ICOPYI_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
STOP_RPCC(innercost);
for(jjs = js; jjs < js + min_j; jjs += min_jj){
min_jj = min_j + js - jjs;
if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N;
START_RPCC();
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
#elif defined(RR) || defined(RC) || defined(CR) || defined(CC)
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
#elif defined(RN) || defined(RT) || defined(CN) || defined(CT)
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
#else
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
#endif
STOP_RPCC(outercost);
START_RPCC();
KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA17, ALPHA18,
sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
STOP_RPCC(kernelcost);
}
for(is = m_from + min_i; is < m_to; is += min_i){
min_i = m_to - is;
if (min_i >= GEMM3M_P * 2) {
min_i = GEMM3M_P;
} else
if (min_i > GEMM3M_P) {
min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1);
}
START_RPCC();
ICOPYI_OPERATION(min_l, min_i, a, lda, ls, is, sa);
STOP_RPCC(innercost);
START_RPCC();
KERNEL_OPERATION(min_i, min_j, min_l, ALPHA17, ALPHA18, sa, sb, c, ldc, is, js);
STOP_RPCC(kernelcost);
}
} /* end of js */
} /* end of ls */
#ifdef TIMING
total = (double)outercost + (double)innercost + (double)kernelcost;
printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f\n",
innercost / total * 100., outercost / total * 100.,
kernelcost / total * 100.);
printf( " Total %10.3f%% %10.3f MFlops\n",
((double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost / 2 * 100,
2400. * (2. * (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost);
#endif
return 0;
}