/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
/* This file is a template for level 3 operation */
#ifndef BETA_OPERATION
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
#ifndef COMPLEX
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
BETA[0], NULL, 0, NULL, 0, \
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
#else
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
BETA[0], BETA[1], NULL, 0, NULL, 0, \
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
#endif
#else
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
BETA, NULL, 0, NULL, 0, \
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
#endif
#endif
#ifndef ICOPY_OPERATION
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
defined(RN) || defined(RT) || defined(RC) || defined(RR)
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
#else
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
#endif
#endif
#ifndef OCOPY_OPERATION
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
defined(NR) || defined(TR) || defined(CR) || defined(RR)
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
#else
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
#endif
#endif
#ifndef KERNEL_FUNC
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
#define KERNEL_FUNC GEMM_KERNEL_N
#endif
#if defined(CN) || defined(CT) || defined(RN) || defined(RT)
#define KERNEL_FUNC GEMM_KERNEL_L
#endif
#if defined(NC) || defined(TC) || defined(NR) || defined(TR)
#define KERNEL_FUNC GEMM_KERNEL_R
#endif
#if defined(CC) || defined(CR) || defined(RC) || defined(RR)
#define KERNEL_FUNC GEMM_KERNEL_B
#endif
#endif
#ifndef KERNEL_OPERATION
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
#ifndef COMPLEX
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
#else
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
#endif
#else
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
KERNEL_FUNC(M, N, K, ALPHA, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
#endif
#endif
#ifndef FUSED_KERNEL_OPERATION
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
defined(NR) || defined(TR) || defined(CR) || defined(RR)
#ifndef COMPLEX
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
#else
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
#endif
#else
#ifndef COMPLEX
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
#else
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
#endif
#endif
#endif
#ifndef A
#define A args -> a
#endif
#ifndef LDA
#define LDA args -> lda
#endif
#ifndef B
#define B args -> b
#endif
#ifndef LDB
#define LDB args -> ldb
#endif
#ifndef C
#define C args -> c
#endif
#ifndef LDC
#define LDC args -> ldc
#endif
#ifndef M
#define M args -> m
#endif
#ifndef N
#define N args -> n
#endif
#ifndef K
#define K args -> k
#endif
#ifdef TIMING
#define START_RPCC() rpcc_counter = rpcc()
#define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
#else
#define START_RPCC()
#define STOP_RPCC(COUNTER)
#endif
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
XFLOAT *sa, XFLOAT *sb, BLASLONG dummy){
BLASLONG k, lda, ldb, ldc;
FLOAT *alpha, *beta;
FLOAT *a, *b, *c;
BLASLONG m_from, m_to, n_from, n_to;
BLASLONG ls, is, js;
BLASLONG min_l, min_i, min_j;
#if !defined(FUSED_GEMM) || defined(TIMING)
BLASLONG jjs, min_jj;
#endif
BLASLONG l1stride, gemm_p, l2size;
#if defined(XDOUBLE) && defined(QUAD_PRECISION)
xidouble xalpha;
#endif
#ifdef TIMING
unsigned long long rpcc_counter;
unsigned long long innercost = 0;
unsigned long long outercost = 0;
unsigned long long kernelcost = 0;
double total;
#endif
k = K;
a = (FLOAT *)A;
b = (FLOAT *)B;
c = (FLOAT *)C;
lda = LDA;
ldb = LDB;
ldc = LDC;
alpha = (FLOAT *)args -> alpha;
beta = (FLOAT *)args -> beta;
m_from = 0;
m_to = M;
if (range_m) {
m_from = *(((BLASLONG *)range_m) + 0);
m_to = *(((BLASLONG *)range_m) + 1);
}
n_from = 0;
n_to = N;
if (range_n) {
n_from = *(((BLASLONG *)range_n) + 0);
n_to = *(((BLASLONG *)range_n) + 1);
}
if (beta) {
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
#ifndef COMPLEX
if (beta[0] != ONE
#else
if ((beta[0] != ONE) || (beta[1] != ZERO)
#endif
#else
if (((beta[0].x[1] != 0x3fff000000000000UL) || beta[0].x[0] != 0)
#ifdef COMPLEX
&&(((beta[1].x[0] | beta[1].x[1]) << 1) != 0)
#endif
#endif
) {
#if defined(XDOUBLE) && defined(QUAD_PRECISION)
xidouble xbeta;
qtox(&xbeta, beta);
#endif
BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc);
}
}
if ((k == 0) || (alpha == NULL)) return 0;
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
if ((alpha[0] == ZERO)
#ifdef COMPLEX
&& (alpha[1] == ZERO)
#endif
) return 0;
#else
if (((alpha[0].x[0] | alpha[0].x[1]
#ifdef COMPLEX
| alpha[1].x[0] | alpha[1].x[1]
#endif
) << 1) == 0) return 0;
#endif
#if defined(XDOUBLE) && defined(QUAD_PRECISION)
qtox(&xalpha, alpha);
#endif
l2size = GEMM_P * GEMM_Q;
#if 0
fprintf(stderr, "GEMM(Single): M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k);
fprintf(stderr, "GEMM(Single):: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
// fprintf(stderr, "GEMM: SA .. %p SB .. %p\n", sa, sb);
// fprintf(stderr, "A = %p B = %p C = %p\n\tlda = %ld ldb = %ld ldc = %ld\n", a, b, c, lda, ldb, ldc);
#endif
#ifdef TIMING
innercost = 0;
outercost = 0;
kernelcost = 0;
#endif
for(js = n_from; js < n_to; js += GEMM_R){
min_j = n_to - js;
if (min_j > GEMM_R) min_j = GEMM_R;
for(ls = 0; ls < k; ls += min_l){
min_l = k - ls;
if (min_l >= GEMM_Q * 2) {
gemm_p = GEMM_P;
min_l = GEMM_Q;
} else {
if (min_l > GEMM_Q) {
min_l = (min_l / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
}
gemm_p = ((l2size / min_l + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1));
while (gemm_p * min_l > l2size) gemm_p -= GEMM_UNROLL_M;
}
/* First, we have to move data A to L2 cache */
min_i = m_to - m_from;
l1stride = 1;
if (min_i >= GEMM_P * 2) {
min_i = GEMM_P;
} else {
if (min_i > GEMM_P) {
min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
} else {
l1stride = 0;
}
}
START_RPCC();
ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
STOP_RPCC(innercost);
#if defined(FUSED_GEMM) && !defined(TIMING)
FUSED_KERNEL_OPERATION(min_i, min_j, min_l, alpha,
sa, sb, b, ldb, c, ldc, m_from, js, ls);
#else
for(jjs = js; jjs < js + min_j; jjs += min_jj){
min_jj = min_j + js - jjs;
if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
START_RPCC();
OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
sb + min_l * (jjs - js) * COMPSIZE * l1stride);
STOP_RPCC(outercost);
START_RPCC();
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
sa, sb + min_l * (jjs - js) * COMPSIZE * l1stride, c, ldc, m_from, jjs);
#else
KERNEL_OPERATION(min_i, min_jj, min_l, (void *)&xalpha,
sa, sb + min_l * (jjs - js) * COMPSIZE * l1stride, c, ldc, m_from, jjs);
#endif
STOP_RPCC(kernelcost);
}
#endif
for(is = m_from + min_i; is < m_to; is += min_i){
min_i = m_to - is;
if (min_i >= GEMM_P * 2) {
min_i = GEMM_P;
} else
if (min_i > GEMM_P) {
min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
}
START_RPCC();
ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
STOP_RPCC(innercost);
START_RPCC();
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
#else
KERNEL_OPERATION(min_i, min_j, min_l, (void *)&xalpha, sa, sb, c, ldc, is, js);
#endif
STOP_RPCC(kernelcost);
} /* end of is */
} /* end of js */
} /* end of ls */
#ifdef TIMING
total = (double)outercost + (double)innercost + (double)kernelcost;
printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f kernel Effi. : %5.2f Total Effi. : %5.2f\n",
innercost / total * 100., outercost / total * 100.,
kernelcost / total * 100.,
(double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. * (double)COMPSIZE / 2.,
(double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. * (double)COMPSIZE / 2.);
#endif
return 0;
}