/*****************************************************************************
Copyright (c) 2011, Lab of Parallel Software and Computational Science,ICSAS
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the ISCAS nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************************/
/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include "common.h"
#ifdef OS_LINUX
#include <dlfcn.h>
#include <sys/resource.h>
#endif
#ifdef SMP_SERVER
#undef MONITOR
#undef TIMING
#undef TIMING_DEBUG
#undef NEED_STACKATTR
#define ATTRIBUTE_SIZE 128
/* This is a thread server model implementation. The threads are */
/* spawned at first access to blas library, and still remains until */
/* destruction routine is called. The number of threads are */
/* equal to "OMP_NUM_THREADS - 1" and thread only wakes up when */
/* jobs is queued. */
/* We need this grobal for cheking if initialization is finished. */
int blas_server_avail __attribute__((aligned(ATTRIBUTE_SIZE))) = 0;
/* Local Variables */
#if defined(USE_PTHREAD_LOCK)
static pthread_mutex_t server_lock = PTHREAD_MUTEX_INITIALIZER;
#elif defined(USE_PTHREAD_SPINLOCK)
static pthread_spinlock_t server_lock = 0;
#else
static unsigned long server_lock = 0;
#endif
#define THREAD_STATUS_SLEEP 2
#define THREAD_STATUS_WAKEUP 4
static pthread_t blas_threads [MAX_CPU_NUMBER];
typedef struct {
blas_queue_t * volatile queue __attribute__((aligned(ATTRIBUTE_SIZE)));
#if defined(OS_LINUX) && !defined(NO_AFFINITY)
int node;
#endif
volatile long status;
pthread_mutex_t lock;
pthread_cond_t wakeup;
} thread_status_t;
static thread_status_t thread_status[MAX_CPU_NUMBER] __attribute__((aligned(ATTRIBUTE_SIZE)));
#ifndef THREAD_TIMEOUT
#define THREAD_TIMEOUT 28
#endif
static unsigned int thread_timeout = (1U << (THREAD_TIMEOUT));
#ifdef MONITOR
/* Monitor is a function to see thread's status for every seconds. */
/* Usually it turns off and it's for debugging. */
static pthread_t monitor_thread;
static int main_status[MAX_CPU_NUMBER];
#define MAIN_ENTER 0x01
#define MAIN_EXIT 0x02
#define MAIN_TRYLOCK 0x03
#define MAIN_LOCKSUCCESS 0x04
#define MAIN_QUEUING 0x05
#define MAIN_RECEIVING 0x06
#define MAIN_RUNNING1 0x07
#define MAIN_RUNNING2 0x08
#define MAIN_RUNNING3 0x09
#define MAIN_WAITING 0x0a
#define MAIN_SLEEPING 0x0b
#define MAIN_FINISH 0x0c
#define MAIN_DONE 0x0d
#endif
#define BLAS_QUEUE_FINISHED 3
#define BLAS_QUEUE_RUNNING 4
#ifdef TIMING
BLASLONG exit_time[MAX_CPU_NUMBER];
#endif
static void legacy_exec(void *func, int mode, blas_arg_t *args, void *sb){
if (!(mode & BLAS_COMPLEX)){
#ifdef EXPRECISION
if (mode & BLAS_XDOUBLE){
/* REAL / Extended Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((xdouble *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else
#endif
if (mode & BLAS_DOUBLE){
/* REAL / Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else {
/* REAL / Single */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
}
} else {
#ifdef EXPRECISION
if (mode & BLAS_XDOUBLE){
/* COMPLEX / Extended Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((xdouble *)args -> alpha)[0],
((xdouble *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else
#endif
if (mode & BLAS_DOUBLE){
/* COMPLEX / Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
((double *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else {
/* COMPLEX / Single */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
((float *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
}
}
}
#if defined(OS_LINUX) && !defined(NO_AFFINITY)
int gotoblas_set_affinity(int);
int gotoblas_set_affinity2(int);
int get_node(void);
#endif
static int increased_threads = 0;
static int blas_thread_server(void *arg){
/* Thread identifier */
BLASLONG cpu = (BLASLONG)arg;
unsigned int last_tick;
void *buffer, *sa, *sb;
blas_queue_t *queue;
#ifdef TIMING_DEBUG
unsigned long start, stop;
#endif
#if defined(OS_LINUX) && !defined(NO_AFFINITY)
if (!increased_threads)
thread_status[cpu].node = gotoblas_set_affinity(cpu + 1);
else
thread_status[cpu].node = gotoblas_set_affinity(-1);
#endif
#ifdef MONITOR
main_status[cpu] = MAIN_ENTER;
#endif
buffer = blas_memory_alloc(2);
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Thread has just been spawned!\n", cpu);
#endif
while (1){
#ifdef MONITOR
main_status[cpu] = MAIN_QUEUING;
#endif
#ifdef TIMING
exit_time[cpu] = rpcc();
#endif
last_tick = (unsigned int)rpcc();
while (!thread_status[cpu].queue) {
YIELDING;
if ((unsigned int)rpcc() - last_tick > thread_timeout) {
pthread_mutex_lock (&thread_status[cpu].lock);
if (!thread_status[cpu].queue) {
thread_status[cpu].status = THREAD_STATUS_SLEEP;
while (thread_status[cpu].status == THREAD_STATUS_SLEEP) {
#ifdef MONITOR
main_status[cpu] = MAIN_SLEEPING;
#endif
pthread_cond_wait(&thread_status[cpu].wakeup, &thread_status[cpu].lock);
}
}
pthread_mutex_unlock(&thread_status[cpu].lock);
last_tick = (unsigned int)rpcc();
}
}
queue = thread_status[cpu].queue;
if ((long)queue == -1) break;
#ifdef MONITOR
main_status[cpu] = MAIN_RECEIVING;
#endif
#ifdef TIMING_DEBUG
start = rpcc();
#endif
if (queue) {
int (*routine)(blas_arg_t *, void *, void *, void *, void *, BLASLONG) = queue -> routine;
thread_status[cpu].queue = (blas_queue_t *)1;
sa = queue -> sa;
sb = queue -> sb;
#ifdef SMP_DEBUG
if (queue -> args) {
fprintf(STDERR, "Server[%2ld] Calculation started. Mode = 0x%03x M = %3ld N=%3ld K=%3ld\n",
cpu, queue->mode, queue-> args ->m, queue->args->n, queue->args->k);
}
#endif
#ifdef CONSISTENT_FPCSR
__asm__ __volatile__ ("ldmxcsr %0" : : "m" (queue -> sse_mode));
__asm__ __volatile__ ("fldcw %0" : : "m" (queue -> x87_mode));
#endif
#ifdef MONITOR
main_status[cpu] = MAIN_RUNNING1;
#endif
if (sa == NULL) sa = (void *)((BLASLONG)buffer + GEMM_OFFSET_A);
if (sb == NULL) {
if (!(queue -> mode & BLAS_COMPLEX)){
#ifdef EXPRECISION
if (queue -> mode & BLAS_XDOUBLE){
sb = (void *)(((BLASLONG)sa + ((QGEMM_P * QGEMM_Q * sizeof(xdouble)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else
#endif
if (queue -> mode & BLAS_DOUBLE){
sb = (void *)(((BLASLONG)sa + ((DGEMM_P * DGEMM_Q * sizeof(double)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else {
sb = (void *)(((BLASLONG)sa + ((SGEMM_P * SGEMM_Q * sizeof(float)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
}
} else {
#ifdef EXPRECISION
if (queue -> mode & BLAS_XDOUBLE){
sb = (void *)(((BLASLONG)sa + ((XGEMM_P * XGEMM_Q * 2 * sizeof(xdouble)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else
#endif
if (queue -> mode & BLAS_DOUBLE){
sb = (void *)(((BLASLONG)sa + ((ZGEMM_P * ZGEMM_Q * 2 * sizeof(double)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else {
sb = (void *)(((BLASLONG)sa + ((CGEMM_P * CGEMM_Q * 2 * sizeof(float)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
}
}
}
#ifdef MONITOR
main_status[cpu] = MAIN_RUNNING2;
#endif
if (queue -> mode & BLAS_LEGACY) {
legacy_exec(routine, queue -> mode, queue -> args, sb);
} else
if (queue -> mode & BLAS_PTHREAD) {
void (*pthreadcompat)(void *) = queue -> routine;
(pthreadcompat)(queue -> args);
} else
(routine)(queue -> args, queue -> range_m, queue -> range_n, sa, sb, queue -> position);
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Calculation finished!\n", cpu);
#endif
#ifdef MONITOR
main_status[cpu] = MAIN_FINISH;
#endif
thread_status[cpu].queue = (blas_queue_t * volatile) ((long)thread_status[cpu].queue & 0); /* Need a trick */
WMB;
}
#ifdef MONITOR
main_status[cpu] = MAIN_DONE;
#endif
#ifdef TIMING_DEBUG
stop = rpcc();
fprintf(STDERR, "Thread[%ld] : %16lu %16lu (%8lu cycles)\n", cpu + 1,
start, stop,
stop - start);
#endif
}
/* Shutdown procedure */
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Shutdown!\n", cpu);
#endif
blas_memory_free(buffer);
pthread_exit(NULL);
return 0;
}
#ifdef MONITOR
static BLASLONG num_suspend = 0;
static int blas_monitor(void *arg){
int i;
while(1){
for (i = 0; i < blas_num_threads - 1; i++){
switch (main_status[i]) {
case MAIN_ENTER :
fprintf(STDERR, "THREAD[%2d] : Entering.\n", i);
break;
case MAIN_EXIT :
fprintf(STDERR, "THREAD[%2d] : Exiting.\n", i);
break;
case MAIN_TRYLOCK :
fprintf(STDERR, "THREAD[%2d] : Trying lock operation.\n", i);
break;
case MAIN_QUEUING :
fprintf(STDERR, "THREAD[%2d] : Queuing.\n", i);
break;
case MAIN_RECEIVING :
fprintf(STDERR, "THREAD[%2d] : Receiving.\n", i);
break;
case MAIN_RUNNING1 :
fprintf(STDERR, "THREAD[%2d] : Running1.\n", i);
break;
case MAIN_RUNNING2 :
fprintf(STDERR, "THREAD[%2d] : Running2.\n", i);
break;
case MAIN_RUNNING3 :
fprintf(STDERR, "THREAD[%2d] : Running3.\n", i);
break;
case MAIN_WAITING :
fprintf(STDERR, "THREAD[%2d] : Waiting.\n", i);
break;
case MAIN_SLEEPING :
fprintf(STDERR, "THREAD[%2d] : Sleeping.\n", i);
break;
case MAIN_FINISH :
fprintf(STDERR, "THREAD[%2d] : Finishing.\n", i);
break;
case MAIN_DONE :
fprintf(STDERR, "THREAD[%2d] : Job is done.\n", i);
break;
}
fprintf(stderr, "Total number of suspended ... %ld\n", num_suspend);
}
sleep(1);
}
return 0;
}
#endif
/* Initializing routine */
int blas_thread_init(void){
BLASLONG i;
int ret;
#ifdef NEED_STACKATTR
pthread_attr_t attr;
#endif
if (blas_server_avail) return 0;
#ifdef NEED_STACKATTR
pthread_attr_init(&attr);
pthread_attr_setguardsize(&attr, 0x1000U);
pthread_attr_setstacksize( &attr, 0x1000U);
#endif
LOCK_COMMAND(&server_lock);
if (!blas_server_avail){
char *p;
p = getenv("THREAD_TIMEOUT");
if (p) {
thread_timeout = atoi(p);
if (thread_timeout < 4) thread_timeout = 4;
if (thread_timeout > 30) thread_timeout = 30;
thread_timeout = (1 << thread_timeout);
}else{
p = getenv("GOTO_THREAD_TIMEOUT");
if (p) {
thread_timeout = atoi(p);
if (thread_timeout < 4) thread_timeout = 4;
if (thread_timeout > 30) thread_timeout = 30;
thread_timeout = (1 << thread_timeout);
}
}
for(i = 0; i < blas_num_threads - 1; i++){
thread_status[i].queue = (blas_queue_t *)NULL;
thread_status[i].status = THREAD_STATUS_WAKEUP;
pthread_mutex_init(&thread_status[i].lock, NULL);
pthread_cond_init (&thread_status[i].wakeup, NULL);
#ifdef NEED_STACKATTR
ret=pthread_create(&blas_threads[i], &attr,
(void *)&blas_thread_server, (void *)i);
#else
ret=pthread_create(&blas_threads[i], NULL,
(void *)&blas_thread_server, (void *)i);
#endif
if(ret!=0){
fprintf(STDERR,"OpenBLAS: pthread_creat error in blas_thread_init function. Error code:%d\n",ret);
exit(1);
}
}
#ifdef MONITOR
pthread_create(&monitor_thread, NULL,
(void *)&blas_monitor, (void *)NULL);
#endif
blas_server_avail = 1;
}
UNLOCK_COMMAND(&server_lock);
return 0;
}
/*
User can call one of two routines.
exec_blas_async ... immediately returns after jobs are queued.
exec_blas ... returns after jobs are finished.
*/
static BLASULONG exec_queue_lock = 0;
int exec_blas_async(BLASLONG pos, blas_queue_t *queue){
BLASLONG i = 0;
blas_queue_t *current = queue;
#if defined(OS_LINUX) && !defined(NO_AFFINITY) && !defined(PARAMTEST)
int node = get_node();
int nodes = get_num_nodes();
#endif
#ifdef SMP_DEBUG
int exec_count = 0;
fprintf(STDERR, "Exec_blas_async is called. Position = %d\n", pos);
#endif
blas_lock(&exec_queue_lock);
while (queue) {
queue -> position = pos;
#ifdef CONSISTENT_FPCSR
__asm__ __volatile__ ("fnstcw %0" : "=m" (queue -> x87_mode));
__asm__ __volatile__ ("stmxcsr %0" : "=m" (queue -> sse_mode));
#endif
#if defined(OS_LINUX) && !defined(NO_AFFINITY) && !defined(PARAMTEST)
/* Node Mapping Mode */
if (queue -> mode & BLAS_NODE) {
do {
while((thread_status[i].node != node || thread_status[i].queue) && (i < blas_num_threads - 1)) i ++;
if (i < blas_num_threads - 1) break;
i ++;
if (i >= blas_num_threads - 1) {
i = 0;
node ++;
if (node >= nodes) node = 0;
}
} while (1);
} else {
while(thread_status[i].queue) {
i ++;
if (i >= blas_num_threads - 1) i = 0;
}
}
#else
while(thread_status[i].queue) {
i ++;
if (i >= blas_num_threads - 1) i = 0;
}
#endif
queue -> assigned = i;
WMB;
thread_status[i].queue = queue;
WMB;
queue = queue -> next;
pos ++;
#ifdef SMP_DEBUG
exec_count ++;
#endif
}
blas_unlock(&exec_queue_lock);
#ifdef SMP_DEBUG
fprintf(STDERR, "Done(Number of threads = %2ld).\n", exec_count);
#endif
while (current) {
pos = current -> assigned;
if ((BLASULONG)thread_status[pos].queue > 1) {
if (thread_status[pos].status == THREAD_STATUS_SLEEP) {
pthread_mutex_lock (&thread_status[pos].lock);
#ifdef MONITOR
num_suspend ++;
#endif
if (thread_status[pos].status == THREAD_STATUS_SLEEP) {
thread_status[pos].status = THREAD_STATUS_WAKEUP;
pthread_cond_signal(&thread_status[pos].wakeup);
}
pthread_mutex_unlock(&thread_status[pos].lock);
}
}
current = current -> next;
}
return 0;
}
int exec_blas_async_wait(BLASLONG num, blas_queue_t *queue){
while ((num > 0) && queue) {
while(thread_status[queue -> assigned].queue) {
YIELDING;
};
queue = queue -> next;
num --;
}
#ifdef SMP_DEBUG
fprintf(STDERR, "Done.\n\n");
#endif
return 0;
}
/* Execute Threads */
int exec_blas(BLASLONG num, blas_queue_t *queue){
int (*routine)(blas_arg_t *, void *, void *, double *, double *, BLASLONG);
#ifdef TIMING_DEBUG
BLASULONG start, stop;
#endif
if ((num <= 0) || (queue == NULL)) return 0;
#ifdef SMP_DEBUG
fprintf(STDERR, "Exec_blas is called. Number of executing threads : %ld\n", num);
#endif
#ifdef __ELF__
if (omp_in_parallel && (num > 1)) {
if (omp_in_parallel() > 0) {
fprintf(stderr,
"OpenBLAS Warning : Detect OpenMP Loop and this application may hang. "
"Please rebuild the library with USE_OPENMP=1 option.\n");
}
}
#endif
if ((num > 1) && queue -> next) exec_blas_async(1, queue -> next);
#ifdef TIMING_DEBUG
start = rpcc();
fprintf(STDERR, "\n");
#endif
routine = queue -> routine;
if (queue -> mode & BLAS_LEGACY) {
legacy_exec(routine, queue -> mode, queue -> args, queue -> sb);
} else
if (queue -> mode & BLAS_PTHREAD) {
void (*pthreadcompat)(void *) = queue -> routine;
(pthreadcompat)(queue -> args);
} else
(routine)(queue -> args, queue -> range_m, queue -> range_n,
queue -> sa, queue -> sb, 0);
#ifdef TIMING_DEBUG
stop = rpcc();
#endif
if ((num > 1) && queue -> next) exec_blas_async_wait(num - 1, queue -> next);
#ifdef TIMING_DEBUG
fprintf(STDERR, "Thread[0] : %16lu %16lu (%8lu cycles)\n",
start, stop,
stop - start);
#endif
return 0;
}
void goto_set_num_threads(int num_threads) {
long i;
if (num_threads < 1) num_threads = blas_num_threads;
if (num_threads > MAX_CPU_NUMBER) num_threads = MAX_CPU_NUMBER;
if (num_threads > blas_num_threads) {
LOCK_COMMAND(&server_lock);
increased_threads = 1;
for(i = blas_num_threads - 1; i < num_threads - 1; i++){
thread_status[i].queue = (blas_queue_t *)NULL;
thread_status[i].status = THREAD_STATUS_WAKEUP;
pthread_mutex_init(&thread_status[i].lock, NULL);
pthread_cond_init (&thread_status[i].wakeup, NULL);
#ifdef NEED_STACKATTR
pthread_create(&blas_threads[i], &attr,
(void *)&blas_thread_server, (void *)i);
#else
pthread_create(&blas_threads[i], NULL,
(void *)&blas_thread_server, (void *)i);
#endif
}
blas_num_threads = num_threads;
UNLOCK_COMMAND(&server_lock);
}
blas_cpu_number = num_threads;
#if defined(ARCH_MIPS64)
//set parameters for different number of threads.
blas_set_parameter();
#endif
}
void openblas_set_num_threads(int num_threads) {
goto_set_num_threads(num_threads);
}
/* Compatible function with pthread_create / join */
int gotoblas_pthread(int numthreads, void *function, void *args, int stride) {
blas_queue_t queue[MAX_CPU_NUMBER];
int i;
if (numthreads <= 0) return 0;
#ifdef SMP
if (blas_cpu_number == 0) blas_get_cpu_number();
#ifdef SMP_SERVER
if (blas_server_avail == 0) blas_thread_init();
#endif
#endif
for (i = 0; i < numthreads; i ++) {
queue[i].mode = BLAS_PTHREAD;
queue[i].routine = function;
queue[i].args = args;
queue[i].range_m = NULL;
queue[i].range_n = NULL;
queue[i].sa = args;
queue[i].sb = args;
queue[i].next = &queue[i + 1];
args += stride;
}
queue[numthreads - 1].next = NULL;
exec_blas(numthreads, queue);
return 0;
}
/* Shutdown procedure, but user don't have to call this routine. The */
/* kernel automatically kill threads. */
int BLASFUNC(blas_thread_shutdown)(void){
int i;
if (!blas_server_avail) return 0;
LOCK_COMMAND(&server_lock);
for (i = 0; i < blas_num_threads - 1; i++) {
blas_lock(&exec_queue_lock);
thread_status[i].queue = (blas_queue_t *)-1;
blas_unlock(&exec_queue_lock);
pthread_mutex_lock (&thread_status[i].lock);
thread_status[i].status = THREAD_STATUS_WAKEUP;
pthread_cond_signal (&thread_status[i].wakeup);
pthread_mutex_unlock(&thread_status[i].lock);
}
for(i = 0; i < blas_num_threads - 1; i++){
pthread_join(blas_threads[i], NULL);
}
for(i = 0; i < blas_num_threads - 1; i++){
pthread_mutex_destroy(&thread_status[i].lock);
pthread_cond_destroy (&thread_status[i].wakeup);
}
#ifdef NEED_STACKATTR
pthread_attr_destory(&attr);
#endif
blas_server_avail = 0;
UNLOCK_COMMAND(&server_lock);
return 0;
}
#endif