Blob Blame Raw
      SUBROUTINE ZTRTI2F( UPLO, DIAG, N, A, LDA, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  ZTRTI2 computes the inverse of a complex upper or lower triangular
*  matrix.
*
*  This is the Level 2 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the triangular matrix A.  If UPLO = 'U', the
*          leading n by n upper triangular part of the array A contains
*          the upper triangular matrix, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n by n lower triangular part of the array A contains
*          the lower triangular matrix, and the strictly upper
*          triangular part of A is not referenced.  If DIAG = 'U', the
*          diagonal elements of A are also not referenced and are
*          assumed to be 1.
*
*          On exit, the (triangular) inverse of the original matrix, in
*          the same storage format.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT, UPPER
      INTEGER            J
      COMPLEX*16         AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZSCAL, ZTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOUNIT = LSAME( DIAG, 'N' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTRTI2', -INFO )
         RETURN
      END IF
*
      IF( UPPER ) THEN
*
*        Compute inverse of upper triangular matrix.
*
         DO 10 J = 1, N
            IF( NOUNIT ) THEN
               A( J, J ) = ONE / A( J, J )
               AJJ = -A( J, J )
            ELSE
               AJJ = -ONE
            END IF
*
*           Compute elements 1:j-1 of j-th column.
*
            CALL ZTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA,
     $                  A( 1, J ), 1 )
            CALL ZSCAL( J-1, AJJ, A( 1, J ), 1 )
   10    CONTINUE
      ELSE
*
*        Compute inverse of lower triangular matrix.
*
         DO 20 J = N, 1, -1
            IF( NOUNIT ) THEN
               A( J, J ) = ONE / A( J, J )
               AJJ = -A( J, J )
            ELSE
               AJJ = -ONE
            END IF
            IF( J.LT.N ) THEN
*
*              Compute elements j+1:n of j-th column.
*
               CALL ZTRMV( 'Lower', 'No transpose', DIAG, N-J,
     $                     A( J+1, J+1 ), LDA, A( J+1, J ), 1 )
               CALL ZSCAL( N-J, AJJ, A( J+1, J ), 1 )
            END IF
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of ZTRTI2
*
      END