/*! @file cgscon.c
* \brief Estimates reciprocal of the condition number of a general matrix
*
* <pre>
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Modified from lapack routines CGECON.
* </pre>
*/
/*
* File name: cgscon.c
* History: Modified from lapack routines CGECON.
*/
#include <math.h>
#include "slu_cdefs.h"
/*! \brief
*
* <pre>
* Purpose
* =======
*
* CGSCON estimates the reciprocal of the condition number of a general
* real matrix A, in either the 1-norm or the infinity-norm, using
* the LU factorization computed by CGETRF. *
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as
* RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* NORM (input) char*
* Specifies whether the 1-norm condition number or the
* infinity-norm condition number is required:
* = '1' or 'O': 1-norm;
* = 'I': Infinity-norm.
*
* L (input) SuperMatrix*
* The factor L from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use compressed row subscripts storage for supernodes,
* i.e., L has types: Stype = SLU_SC, Dtype = SLU_C, Mtype = SLU_TRLU.
*
* U (input) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use column-wise storage scheme, i.e., U has types:
* Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_TRU.
*
* ANORM (input) float
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
* If NORM = 'I', the infinity-norm of the original matrix A.
*
* RCOND (output) float*
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
* INFO (output) int*
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
* </pre>
*/
void
cgscon(char *norm, SuperMatrix *L, SuperMatrix *U,
float anorm, float *rcond, SuperLUStat_t *stat, int *info)
{
/* Local variables */
int kase, kase1, onenrm, i;
float ainvnm;
complex *work;
extern int crscl_(int *, complex *, complex *, int *);
extern int clacon_(int *, complex *, complex *, float *, int *);
/* Test the input parameters. */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I")) *info = -1;
else if (L->nrow < 0 || L->nrow != L->ncol ||
L->Stype != SLU_SC || L->Dtype != SLU_C || L->Mtype != SLU_TRLU)
*info = -2;
else if (U->nrow < 0 || U->nrow != U->ncol ||
U->Stype != SLU_NC || U->Dtype != SLU_C || U->Mtype != SLU_TRU)
*info = -3;
if (*info != 0) {
i = -(*info);
xerbla_("cgscon", &i);
return;
}
/* Quick return if possible */
*rcond = 0.;
if ( L->nrow == 0 || U->nrow == 0) {
*rcond = 1.;
return;
}
work = complexCalloc( 3*L->nrow );
if ( !work )
ABORT("Malloc fails for work arrays in cgscon.");
/* Estimate the norm of inv(A). */
ainvnm = 0.;
if ( onenrm ) kase1 = 1;
else kase1 = 2;
kase = 0;
do {
clacon_(&L->nrow, &work[L->nrow], &work[0], &ainvnm, &kase);
if (kase == 0) break;
if (kase == kase1) {
/* Multiply by inv(L). */
sp_ctrsv("L", "No trans", "Unit", L, U, &work[0], stat, info);
/* Multiply by inv(U). */
sp_ctrsv("U", "No trans", "Non-unit", L, U, &work[0], stat, info);
} else {
/* Multiply by inv(U'). */
sp_ctrsv("U", "Transpose", "Non-unit", L, U, &work[0], stat, info);
/* Multiply by inv(L'). */
sp_ctrsv("L", "Transpose", "Unit", L, U, &work[0], stat, info);
}
} while ( kase != 0 );
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.) *rcond = (1. / ainvnm) / anorm;
SUPERLU_FREE (work);
return;
} /* cgscon */