#include "f2c.h"
/* Subroutine */ int slartg_(real *f, real *g, real *cs, real *sn, real *r)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
SLARTG generate a plane rotation so that
[ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
[ -SN CS ] [ G ] [ 0 ]
This is a slower, more accurate version of the BLAS1 routine SROTG,
with the following other differences:
F and G are unchanged on return.
If G=0, then CS=1 and SN=0.
If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
floating point operations (saves work in SBDSQR when
there are zeros on the diagonal).
If F exceeds G in magnitude, CS will be positive.
Arguments
=========
F (input) REAL
The first component of vector to be rotated.
G (input) REAL
The second component of vector to be rotated.
CS (output) REAL
The cosine of the rotation.
SN (output) REAL
The sine of the rotation.
R (output) REAL
The nonzero component of the rotated vector.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer i__1;
real r__1, r__2;
/* Builtin functions */
double log(doublereal), pow_ri(real *, integer *), sqrt(doublereal);
/* Local variables */
static integer i;
static real scale;
static integer count;
static real f1, g1, safmn2, safmx2;
extern float slamch_(char *);
static real safmin, eps;
if (first) {
first = FALSE_;
safmin = slamch_("S");
eps = slamch_("E");
r__1 = slamch_("B");
i__1 = (integer) (log(safmin / eps) / log(slamch_("B")) / 2.f);
safmn2 = pow_ri(&r__1, &i__1);
safmx2 = 1.f / safmn2;
}
if (*g == 0.f) {
*cs = 1.f;
*sn = 0.f;
*r = *f;
} else if (*f == 0.f) {
*cs = 0.f;
*sn = 1.f;
*r = *g;
} else {
f1 = *f;
g1 = *g;
/* Computing MAX */
r__1 = dabs(f1), r__2 = dabs(g1);
scale = dmax(r__1,r__2);
if (scale >= safmx2) {
count = 0;
L10:
++count;
f1 *= safmn2;
g1 *= safmn2;
/* Computing MAX */
r__1 = dabs(f1), r__2 = dabs(g1);
scale = dmax(r__1,r__2);
if (scale >= safmx2) {
goto L10;
}
/* Computing 2nd power */
r__1 = f1;
/* Computing 2nd power */
r__2 = g1;
*r = sqrt(r__1 * r__1 + r__2 * r__2);
*cs = f1 / *r;
*sn = g1 / *r;
i__1 = count;
for (i = 1; i <= count; ++i) {
*r *= safmx2;
/* L20: */
}
} else if (scale <= safmn2) {
count = 0;
L30:
++count;
f1 *= safmx2;
g1 *= safmx2;
/* Computing MAX */
r__1 = dabs(f1), r__2 = dabs(g1);
scale = dmax(r__1,r__2);
if (scale <= safmn2) {
goto L30;
}
/* Computing 2nd power */
r__1 = f1;
/* Computing 2nd power */
r__2 = g1;
*r = sqrt(r__1 * r__1 + r__2 * r__2);
*cs = f1 / *r;
*sn = g1 / *r;
i__1 = count;
for (i = 1; i <= count; ++i) {
*r *= safmn2;
/* L40: */
}
} else {
/* Computing 2nd power */
r__1 = f1;
/* Computing 2nd power */
r__2 = g1;
*r = sqrt(r__1 * r__1 + r__2 * r__2);
*cs = f1 / *r;
*sn = g1 / *r;
}
if (dabs(*f) > dabs(*g) && *cs < 0.f) {
*cs = -(doublereal)(*cs);
*sn = -(doublereal)(*sn);
*r = -(doublereal)(*r);
}
}
return 0;
/* End of SLARTG */
} /* slartg_ */