/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static integer c__4 = 4;
static integer c__8 = 8;
/* Subroutine */ int zlarot_(logical *lrows, logical *lleft, logical *lright,
integer *nl, doublecomplex *c, doublecomplex *s, doublecomplex *a,
integer *lda, doublecomplex *xleft, doublecomplex *xright)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4;
doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
static integer iinc, j, inext;
static doublecomplex tempx;
static integer ix, iy, nt;
static doublecomplex xt[2], yt[2];
extern /* Subroutine */ int xerbla_(char *, integer *);
static integer iyt;
/* -- LAPACK auxiliary test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
ZLAROT applies a (Givens) rotation to two adjacent rows or
columns, where one element of the first and/or last column/row
may be a separate variable. This is specifically indended
for use on matrices stored in some format other than GE, so
that elements of the matrix may be used or modified for which
no array element is provided.
One example is a symmetric matrix in SB format (bandwidth=4), for
which UPLO='L': Two adjacent rows will have the format:
row j: * * * * * . . . .
row j+1: * * * * * . . . .
'*' indicates elements for which storage is provided,
'.' indicates elements for which no storage is provided, but
are not necessarily zero; their values are determined by
symmetry. ' ' indicates elements which are necessarily zero,
and have no storage provided.
Those columns which have two '*'s can be handled by DROT.
Those columns which have no '*'s can be ignored, since as long
as the Givens rotations are carefully applied to preserve
symmetry, their values are determined.
Those columns which have one '*' have to be handled separately,
by using separate variables "p" and "q":
row j: * * * * * p . . .
row j+1: q * * * * * . . . .
The element p would have to be set correctly, then that column
is rotated, setting p to its new value. The next call to
ZLAROT would rotate columns j and j+1, using p, and restore
symmetry. The element q would start out being zero, and be
made non-zero by the rotation. Later, rotations would presumably
be chosen to zero q out.
Typical Calling Sequences: rotating the i-th and (i+1)-st rows.
------- ------- ---------
General dense matrix:
CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S,
A(i,1),LDA, DUMMY, DUMMY)
General banded matrix in GB format:
j = MAX(1, i-KL )
NL = MIN( N, i+KU+1 ) + 1-j
CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S,
A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT )
[ note that i+1-j is just MIN(i,KL+1) ]
Symmetric banded matrix in SY format, bandwidth K,
lower triangle only:
j = MAX(1, i-K )
NL = MIN( K+1, i ) + 1
CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S,
A(i,j), LDA, XLEFT, XRIGHT )
Same, but upper triangle only:
NL = MIN( K+1, N-i ) + 1
CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S,
A(i,i), LDA, XLEFT, XRIGHT )
Symmetric banded matrix in SB format, bandwidth K,
lower triangle only:
[ same as for SY, except:]
. . . .
A(i+1-j,j), LDA-1, XLEFT, XRIGHT )
[ note that i+1-j is just MIN(i,K+1) ]
Same, but upper triangle only:
. . .
A(K+1,i), LDA-1, XLEFT, XRIGHT )
Rotating columns is just the transpose of rotating rows, except
for GB and SB: (rotating columns i and i+1)
GB:
j = MAX(1, i-KU )
NL = MIN( N, i+KL+1 ) + 1-j
CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S,
A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM )
[note that KU+j+1-i is just MAX(1,KU+2-i)]
SB: (upper triangle)
. . . . . .
A(K+j+1-i,i),LDA-1, XTOP, XBOTTM )
SB: (lower triangle)
. . . . . .
A(1,i),LDA-1, XTOP, XBOTTM )
Arguments
=========
LROWS - LOGICAL
If .TRUE., then ZLAROT will rotate two rows. If .FALSE.,
then it will rotate two columns.
Not modified.
LLEFT - LOGICAL
If .TRUE., then XLEFT will be used instead of the
corresponding element of A for the first element in the
second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.)
If .FALSE., then the corresponding element of A will be
used.
Not modified.
LRIGHT - LOGICAL
If .TRUE., then XRIGHT will be used instead of the
corresponding element of A for the last element in the
first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If
.FALSE., then the corresponding element of A will be used.
Not modified.
NL - INTEGER
The length of the rows (if LROWS=.TRUE.) or columns (if
LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are
used, the columns/rows they are in should be included in
NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at
least 2. The number of rows/columns to be rotated
exclusive of those involving XLEFT and/or XRIGHT may
not be negative, i.e., NL minus how many of LLEFT and
LRIGHT are .TRUE. must be at least zero; if not, XERBLA
will be called.
Not modified.
C, S - COMPLEX*16
Specify the Givens rotation to be applied. If LROWS is
true, then the matrix ( c s )
( _ _ )
(-s c ) is applied from the left;
if false, then the transpose (not conjugated) thereof is
applied from the right. Note that in contrast to the
output of ZROTG or to most versions of ZROT, both C and S
are complex. For a Givens rotation, |C|**2 + |S|**2 should
be 1, but this is not checked.
Not modified.
A - COMPLEX*16 array.
The array containing the rows/columns to be rotated. The
first element of A should be the upper left element to
be rotated.
Read and modified.
LDA - INTEGER
The "effective" leading dimension of A. If A contains
a matrix stored in GE, HE, or SY format, then this is just
the leading dimension of A as dimensioned in the calling
routine. If A contains a matrix stored in band (GB, HB, or
SB) format, then this should be *one less* than the leading
dimension used in the calling routine. Thus, if A were
dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the
j-th element in the first of the two rows to be rotated,
and A(2,j) would be the j-th in the second, regardless of
how the array may be stored in the calling routine. [A
cannot, however, actually be dimensioned thus, since for
band format, the row number may exceed LDA, which is not
legal FORTRAN.]
If LROWS=.TRUE., then LDA must be at least 1, otherwise
it must be at least NL minus the number of .TRUE. values
in XLEFT and XRIGHT.
Not modified.
XLEFT - COMPLEX*16
If LLEFT is .TRUE., then XLEFT will be used and modified
instead of A(2,1) (if LROWS=.TRUE.) or A(1,2)
(if LROWS=.FALSE.).
Read and modified.
XRIGHT - COMPLEX*16
If LRIGHT is .TRUE., then XRIGHT will be used and modified
instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1)
(if LROWS=.FALSE.).
Read and modified.
=====================================================================
Set up indices, arrays for ends
Parameter adjustments */
--a;
/* Function Body */
if (*lrows) {
iinc = *lda;
inext = 1;
} else {
iinc = 1;
inext = *lda;
}
if (*lleft) {
nt = 1;
ix = iinc + 1;
iy = *lda + 2;
xt[0].r = a[1].r, xt[0].i = a[1].i;
yt[0].r = xleft->r, yt[0].i = xleft->i;
} else {
nt = 0;
ix = 1;
iy = inext + 1;
}
if (*lright) {
iyt = inext + 1 + (*nl - 1) * iinc;
++nt;
i__1 = nt - 1;
xt[i__1].r = xright->r, xt[i__1].i = xright->i;
i__1 = nt - 1;
i__2 = iyt;
yt[i__1].r = a[i__2].r, yt[i__1].i = a[i__2].i;
}
/* Check for errors */
if (*nl < nt) {
xerbla_("ZLAROT", &c__4);
return 0;
}
if (*lda <= 0 || ! (*lrows) && *lda < *nl - nt) {
xerbla_("ZLAROT", &c__8);
return 0;
}
/* Rotate
ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S */
i__1 = *nl - nt - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = ix + j * iinc;
z__2.r = c->r * a[i__2].r - c->i * a[i__2].i, z__2.i = c->r * a[i__2]
.i + c->i * a[i__2].r;
i__3 = iy + j * iinc;
z__3.r = s->r * a[i__3].r - s->i * a[i__3].i, z__3.i = s->r * a[i__3]
.i + s->i * a[i__3].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
tempx.r = z__1.r, tempx.i = z__1.i;
i__2 = iy + j * iinc;
d_cnjg(&z__4, s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__3 = ix + j * iinc;
z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = z__3.r * a[
i__3].i + z__3.i * a[i__3].r;
d_cnjg(&z__6, c);
i__4 = iy + j * iinc;
z__5.r = z__6.r * a[i__4].r - z__6.i * a[i__4].i, z__5.i = z__6.r * a[
i__4].i + z__6.i * a[i__4].r;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
i__2 = ix + j * iinc;
a[i__2].r = tempx.r, a[i__2].i = tempx.i;
/* L10: */
}
/* ZROT( NT, XT,1, YT,1, C, S ) with complex C, S */
i__1 = nt;
for (j = 1; j <= i__1; ++j) {
i__2 = j - 1;
z__2.r = c->r * xt[i__2].r - c->i * xt[i__2].i, z__2.i = c->r * xt[
i__2].i + c->i * xt[i__2].r;
i__3 = j - 1;
z__3.r = s->r * yt[i__3].r - s->i * yt[i__3].i, z__3.i = s->r * yt[
i__3].i + s->i * yt[i__3].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
tempx.r = z__1.r, tempx.i = z__1.i;
i__2 = j - 1;
d_cnjg(&z__4, s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__3 = j - 1;
z__2.r = z__3.r * xt[i__3].r - z__3.i * xt[i__3].i, z__2.i = z__3.r *
xt[i__3].i + z__3.i * xt[i__3].r;
d_cnjg(&z__6, c);
i__4 = j - 1;
z__5.r = z__6.r * yt[i__4].r - z__6.i * yt[i__4].i, z__5.i = z__6.r *
yt[i__4].i + z__6.i * yt[i__4].r;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
yt[i__2].r = z__1.r, yt[i__2].i = z__1.i;
i__2 = j - 1;
xt[i__2].r = tempx.r, xt[i__2].i = tempx.i;
/* L20: */
}
/* Stuff values back into XLEFT, XRIGHT, etc. */
if (*lleft) {
a[1].r = xt[0].r, a[1].i = xt[0].i;
xleft->r = yt[0].r, xleft->i = yt[0].i;
}
if (*lright) {
i__1 = nt - 1;
xright->r = xt[i__1].r, xright->i = xt[i__1].i;
i__1 = iyt;
i__2 = nt - 1;
a[i__1].r = yt[i__2].r, a[i__1].i = yt[i__2].i;
}
return 0;
/* End of ZLAROT */
} /* zlarot_ */