#include "tinbetween.h"
#include "tcurves.h"
#include "tstroke.h"
#include "tpalette.h"
//#include "tcolorstyles.h"
//#include "tregion.h"
#include "tmathutil.h"
//#include "tstrokeutil.h"
//#include "tsystem.h"
#include <utility>
#include <limits>
#include <list>
#include "../tvectorimage/tvectorimageP.h"
//#include "tdebugmessage.h"
//--------------------------------------------------------------------------------------
static double average(std::vector<double> &values, double range = 2.5) {
UINT size = values.size();
if (size == 0) return std::numeric_limits<double>::signaling_NaN();
if (size == 1) return values[0];
double sum = 0;
UINT j = 0;
for (; j < size; j++) {
sum += values[j];
}
double average = sum / size;
double variance = 0;
for (j = 0; j < size; j++) {
variance += (average - values[j]) * (average - values[j]);
}
variance /= size;
double err;
int acceptedNum = 0;
sum = 0;
for (j = 0; j < size; j++) {
err = values[j] - average;
err *= err;
if (err <= range * variance) {
sum += values[j];
acceptedNum++;
}
}
assert(acceptedNum > 0);
return (acceptedNum > 0) ? sum / (double)acceptedNum : average;
}
//--------------------------------------------------------------------------------------
static double weightedAverage(std::vector<double> &values,
std::vector<double> &weights,
double range = 2.5) {
UINT size = values.size();
if (size == 0) return std::numeric_limits<double>::signaling_NaN();
double sum = 0;
double totalWeight = 0;
UINT j = 0;
for (; j < size; j++) {
sum += weights[j] * values[j];
totalWeight += weights[j];
}
assert(totalWeight > 0);
if (totalWeight == 0) return std::numeric_limits<double>::signaling_NaN();
double average = sum / totalWeight;
double variance = 0;
for (j = 0; j < size; j++) {
variance += weights[j] * (average - values[j]) * (average - values[j]);
}
variance /= totalWeight;
double err;
totalWeight = 0;
sum = 0;
for (j = 0; j < size; j++) {
err = values[j] - average;
err *= err;
if (err <= range * variance) {
sum += weights[j] * values[j];
totalWeight += weights[j];
}
}
assert(totalWeight > 0);
return (totalWeight != 0) ? sum / totalWeight : average;
}
//--------------------------------------------------------------------------------------
inline UINT angleNumber(const std::vector<std::pair<int, double>> &corners,
double angle) {
UINT count = 0;
UINT size = corners.size();
for (UINT j = 0; j < size; j++)
if (corners[j].second >= angle) count++;
return count;
}
//--------------------------------------------------------------------------------------
inline bool isTooComplex(UINT n1, UINT n2, UINT maxSubsetNumber = 100) {
UINT n, r;
if (n1 > n2) {
n = n1;
r = n2;
} else if (n1 < n2) {
n = n2;
r = n1;
} else {
assert(!"equal angle number");
return false;
}
if (n - r < r) r = n - r;
/*
n*(n-1)* ...(n-r+1) < n^r that must be <= 2^(num bits of UINT)-1
s:=sizeof(UINT)*8
if
n <= 2^( (s-1)/r) =>
log n <= (s-1)/r (the base of log is 2) =>
r*log n <= s-1 =>
log n^r <= log 2^(s-1) =>
n^r <= 2^(s-1) < (2^s)-1
*/
const UINT one = 1;
if (n > (one << ((sizeof(UINT) * 8 - 1) / r))) return true;
UINT product1 = n; // product1 = n*(n-1)* ...(n-r+1)
for (UINT i = 1; i < r; i++) product1 *= --n;
UINT rFact = r;
while (r > 1) rFact *= --r;
return (product1 / rFact > maxSubsetNumber);
// product1/rFact is number of combination
// ( n )
// ( r )
}
//--------------------------------------------------------------------------------------
static void eraseSmallAngles(std::vector<std::pair<int, double>> &corners,
double angle) {
std::vector<std::pair<int, double>>::iterator it = corners.begin();
while (it != corners.end()) {
if ((*it).second < angle)
it = corners.erase(it);
else
++it;
}
}
//--------------------------------------------------------------------------------------
// output:
// min is the minimum angle greater or equal to minDegree (i.e the minimum angle
// of the corners)
// max is the maximum angle greater or equal to minDegree
static void detectCorners(const TStroke *stroke, double minDegree,
std::vector<std::pair<int, double>> &corners,
double &min, double &max) {
const double minSin = fabs(sin(minDegree * M_PI_180));
double angle, vectorialProduct, metaCornerLen, partialLen;
UINT quadCount1 = stroke->getChunkCount();
TPointD speed1, speed2;
int j;
TPointD tan1, tan2;
min = 180;
max = minDegree;
for (j = 1; j < (int)quadCount1; j++) {
speed1 = stroke->getChunk(j - 1)->getSpeed(1);
speed2 = stroke->getChunk(j)->getSpeed(0);
if (!(speed1 == TPointD() || speed2 == TPointD())) {
tan1 = normalize(speed1);
tan2 = normalize(speed2);
vectorialProduct = fabs(cross(tan1, tan2));
if (tan1 * tan2 < 0) {
angle = 180 - asin(tcrop(vectorialProduct, -1.0, 1.0)) * M_180_PI;
corners.push_back(std::make_pair(j, angle));
//------------------------------------------
// TDebugMessage::getStream()<<j<<" real angle";
// TDebugMessage::flush();
//------------------------------------------
if (min > angle) min = angle;
if (max < angle) max = angle;
} else if (vectorialProduct >= minSin) {
angle = asin(tcrop(vectorialProduct, -1.0, 1.0)) * M_180_PI;
corners.push_back(std::make_pair(j, angle));
//------------------------------------------
// TDebugMessage::getStream()<<j<<" real angle";
// TDebugMessage::flush();
//------------------------------------------
if (min > angle) min = angle;
if (max < angle) max = angle;
}
}
}
const double ratioLen = 2.5;
const double ratioAngle = 0.2;
std::vector<std::pair<int, double>>::iterator it = corners.begin();
for (j = 1; j < (int)quadCount1;
j++) //"meta angoli" ( meta perche' derivabili)
{
if (it != corners.end() && j == (*it).first) {
++it;
continue;
}
if (j - 2 >= 0 &&
(corners.empty() || it == corners.begin() ||
j - 1 != (*(it - 1)).first) &&
j + 1 < (int)quadCount1 &&
(corners.empty() || it == corners.end() || j + 1 != (*it).first)) {
speed1 = stroke->getChunk(j - 2)->getSpeed(1);
speed2 = stroke->getChunk(j + 1)->getSpeed(0);
if (!(speed1 == TPointD() || speed2 == TPointD())) {
tan1 = normalize(speed1);
tan2 = normalize(speed2);
vectorialProduct = fabs(cross(tan1, tan2));
if (tan1 * tan2 < 0) {
angle = 180 - asin(tcrop(vectorialProduct, -1.0, 1.0)) * M_180_PI;
metaCornerLen = ratioLen * (stroke->getChunk(j - 1)->getLength() +
stroke->getChunk(j)->getLength());
partialLen = 0;
bool goodAngle = false;
for (int i = j - 3;
i >= 0 && (corners.empty() || it == corners.begin() ||
i + 1 != (*(it - 1)).first);
i--) {
tan1 = stroke->getChunk(i)->getSpeed(1);
if (tan1 == TPointD()) continue;
tan1 = normalize(tan1);
tan2 = stroke->getChunk(i + 1)->getSpeed(1);
if (tan2 == TPointD()) continue;
tan2 = normalize(tan2);
vectorialProduct = fabs(cross(tan1, tan2));
double nearAngle =
asin(tcrop(vectorialProduct, -1.0, 1.0)) * M_180_PI;
if (tan1 * tan2 < 0) nearAngle = 180 - nearAngle;
if (nearAngle > ratioAngle * angle) break;
partialLen += stroke->getChunk(i)->getLength();
if (partialLen > metaCornerLen) {
goodAngle = true;
break;
}
}
if (goodAngle) {
partialLen = 0;
for (int i = j + 2; i + 1 < (int)quadCount1 &&
(corners.empty() || it == corners.end() ||
i + 1 != (*it).first);
i++) {
tan1 = stroke->getChunk(i)->getSpeed(0);
if (tan1 == TPointD()) continue;
tan1 = normalize(tan1);
tan2 = stroke->getChunk(i + 1)->getSpeed(0);
if (tan2 == TPointD()) continue;
tan2 = normalize(tan2);
vectorialProduct = fabs(cross(tan1, tan2));
double nearAngle =
asin(tcrop(vectorialProduct, -1.0, 1.0)) * M_180_PI;
if (tan1 * tan2 < 0) nearAngle = 180 - nearAngle;
if (nearAngle > 0.1 * angle) break;
partialLen += stroke->getChunk(i)->getLength();
if (partialLen > metaCornerLen) {
goodAngle = true;
break;
}
}
}
if (goodAngle) {
// l'angolo viene un po' declassato in quanto meta
it = corners.insert(it, std::make_pair(j, angle * 0.7)) + 1;
if (min > angle) min = angle;
if (max < angle) max = angle;
// TDebugMessage::getStream()<<j<<" meta angle";
// TDebugMessage::flush();
}
}
}
}
}
}
//--------------------------------------------------------------------------------------
static double variance(std::vector<double> &values) {
UINT size = values.size();
if (size == 0) return std::numeric_limits<double>::signaling_NaN();
double sum = 0;
UINT j = 0;
for (; j < size; j++) {
sum += values[j];
}
double average = sum / size;
double variance = 0;
for (j = 0; j < size; j++) {
variance += (average - values[j]) * (average - values[j]);
}
return variance / size;
}
//--------------------------------------------------------------------------------------
static void findBestSolution(const TStroke *stroke1, const TStroke *stroke2,
std::pair<int, double> *partialAngles1,
UINT partialAngles1Size,
const std::vector<std::pair<int, double>> &angles2,
UINT r,
std::list<std::pair<int, double>> &partialSolution,
double &bestValue, std::vector<int> &bestVector) {
//-------------------------------------------------------------------
if (r == partialAngles1Size) {
UINT j;
std::vector<std::pair<int, double>> angles1;
std::list<std::pair<int, double>>::iterator it = partialSolution.begin();
for (; it != partialSolution.end(); ++it) {
angles1.push_back(*it);
}
for (j = 0; j < partialAngles1Size; j++) {
angles1.push_back(partialAngles1[j]);
}
UINT angles1Size = angles1.size();
std::vector<double> rationAngles(angles1Size), ratioLength(angles1Size + 1);
std::vector<double> ratioX, ratioY;
for (j = 0; j < angles1Size; j++) {
rationAngles[j] = fabs(angles1[j].second - angles2[j].second) /
(angles1[j].second + angles2[j].second);
}
UINT firstQuad1 = 0;
UINT firstQuad2 = 0;
UINT nextQuad1, nextQuad2;
TRectD bbox1 = stroke1->getBBox();
TRectD bbox2 = stroke2->getBBox();
double app, div;
double invTotalLen1 = stroke1->getLength();
assert(invTotalLen1 > 0);
invTotalLen1 = 1.0 / invTotalLen1;
double invTotalLen2 = stroke2->getLength();
assert(invTotalLen2 > 0);
invTotalLen2 = 1.0 / invTotalLen2;
for (j = 0; j <= angles1Size; j++) {
if (j < angles1Size) {
nextQuad1 = angles1[j].first;
nextQuad2 = angles2[j].first;
} else {
nextQuad1 = stroke1->getChunkCount();
nextQuad2 = stroke2->getChunkCount();
}
ratioLength[j] =
fabs(stroke1->getLengthAtControlPoint(nextQuad1 * 2) * invTotalLen1 -
stroke2->getLengthAtControlPoint(nextQuad2 * 2) * invTotalLen2);
TPointD p1(stroke1->getChunk(nextQuad1 - 1)->getP2() -
stroke1->getChunk(firstQuad1)->getP0());
p1.x = fabs(p1.x);
p1.y = fabs(p1.y);
TPointD p2(stroke2->getChunk(nextQuad2 - 1)->getP2() -
stroke2->getChunk(firstQuad2)->getP0());
p2.x = fabs(p2.x);
p2.y = fabs(p2.y);
app = fabs(bbox1.getLx() * p2.x - bbox2.getLx() * p1.x);
div = (bbox1.getLx() * p2.x + bbox2.getLx() * p1.x);
if (div) ratioX.push_back(app / div);
app = fabs(bbox1.getLy() * p2.y - bbox2.getLy() * p1.y);
div = (bbox1.getLy() * p2.y + bbox2.getLy() * p1.y);
if (div) ratioY.push_back(app / div);
firstQuad1 = nextQuad1;
firstQuad2 = nextQuad2;
}
double varAng, varX, varY, varLen;
varX = average(ratioX);
varY = average(ratioY);
varLen = average(ratioLength);
varAng = average(rationAngles);
double estimate = varX + varY + varAng + varLen;
/*
#ifdef _DEBUG
for(UINT dI=0; dI<angles1Size; dI++)
{
TDebugMessage::getStream() << angles1[dI].first<<" ";
}
TDebugMessage::flush();
TDebugMessage::getStream() <<"estimate "<< estimate<<"=" ;
TDebugMessage::flush();
TDebugMessage::getStream()<<varAng <<"+" ;
TDebugMessage::flush();
TDebugMessage::getStream()<<varX <<"+" ;
TDebugMessage::flush();
TDebugMessage::getStream()<<varY<<"+";
TDebugMessage::flush();
TDebugMessage::getStream()<<varLen;
TDebugMessage::flush();
#endif
*/
if (estimate < bestValue) {
bestValue = estimate;
if (bestVector.size() != angles1Size) {
assert(!"bad size for bestVector");
bestVector.resize(angles1Size);
}
for (j = 0; j < angles1Size; j++) {
bestVector[j] = angles1[j].first;
}
}
return;
}
//-------------------------------------------------------------------
if (r == 1) {
for (UINT i = 0; i < partialAngles1Size; i++) {
findBestSolution(stroke1, stroke2, partialAngles1 + i, 1, angles2, 1,
partialSolution, bestValue, bestVector);
}
return;
}
partialSolution.push_back(partialAngles1[0]);
findBestSolution(stroke1, stroke2, partialAngles1 + 1, partialAngles1Size - 1,
angles2, r - 1, partialSolution, bestValue, bestVector);
partialSolution.pop_back();
findBestSolution(stroke1, stroke2, partialAngles1 + 1, partialAngles1Size - 1,
angles2, r, partialSolution, bestValue, bestVector);
}
//--------------------------------------------------------------------------------------
static void findBestSolution(const TStroke *stroke1, const TStroke *stroke2,
std::vector<std::pair<int, double>> &angles1,
const std::vector<std::pair<int, double>> &angles2,
double &bestValue, std::vector<int> &bestVector) {
assert(angles1.size() > angles2.size());
std::list<std::pair<int, double>> partialSolution;
findBestSolution(stroke1, stroke2, &(angles1[0]), angles1.size(), angles2,
angles2.size(), partialSolution, bestValue, bestVector);
}
//--------------------------------------------------------------------------------------
static void trivialSolution(const TStroke *stroke1, const TStroke *stroke2,
const std::vector<std::pair<int, double>> &angles1,
const std::vector<std::pair<int, double>> &angles2,
std::vector<int> &solution) {
assert(angles1.size() > angles2.size());
UINT j;
double subStrokeRatio2;
double invTotalLen2 = stroke2->getLength();
assert(invTotalLen2);
invTotalLen2 = 1.0 / invTotalLen2;
double invTotalLen1 = stroke1->getLength();
assert(invTotalLen1 > 0);
invTotalLen1 = 1.0 / invTotalLen1;
if (solution.size() != angles2.size()) {
assert(!"bad size for solution");
solution.resize(angles2.size());
}
int toBeErased = angles1.size() - angles2.size();
UINT count = 0;
double diff, ratio, oldRatio = 100;
subStrokeRatio2 =
stroke2->getLengthAtControlPoint(angles2[count].first * 2) * invTotalLen2;
for (j = 0; j < angles1.size() && count < solution.size(); j++) {
if (toBeErased == 0) {
solution[count++] = angles1[j].first;
} else {
ratio =
stroke1->getLengthAtControlPoint(angles1[j].first * 2) * invTotalLen1;
assert(ratio > 0 && ratio <= 1);
diff = ratio - subStrokeRatio2;
if (diff >= 0) {
if (fabs(diff) < fabs(oldRatio - subStrokeRatio2)) {
solution[count] = angles1[j].first;
oldRatio = 100;
} else {
assert(j > 0);
solution[count] = angles1[j - 1].first;
}
count++;
if (angles2.size() < count)
subStrokeRatio2 =
stroke2->getLengthAtControlPoint(angles2[count].first * 2) *
invTotalLen2;
else
subStrokeRatio2 = 1;
} else {
toBeErased--;
oldRatio = ratio;
}
}
}
assert(count == solution.size());
}
//--------------------------------------------------------------------------------------
static TStroke *extract(const TStroke *source, UINT firstQuad, UINT lastQuad) {
UINT quadCount = source->getChunkCount();
if (firstQuad >= quadCount) {
assert(!"bad quadric index");
firstQuad = quadCount - 1;
}
if (lastQuad < firstQuad) {
assert(!"bad quadric index");
lastQuad = firstQuad;
}
if (lastQuad >= quadCount) {
assert(!"bad quadric index");
lastQuad = quadCount - 1;
}
UINT cpIndex0 = firstQuad * 2;
UINT cpIndex1 = lastQuad * 2 + 2;
std::vector<TThickPoint> points(cpIndex1 - cpIndex0 + 1);
UINT count = 0;
for (UINT j = cpIndex0; j <= cpIndex1; j++) {
points[count++] = source->getControlPoint(j);
}
return new TStroke(points);
}
//--------------------------------------------------------------------------------------
static void sample(const TStroke *stroke, int samplingSize,
std::vector<TPointD> &sampledPoint) {
double samplingFrequency = 1.0 / (double)samplingSize;
sampledPoint.resize(samplingSize);
double totalLen = stroke->getLength();
double step = totalLen * samplingFrequency;
double len = 0;
for (int p = 0; p < samplingSize - 1; p++) {
sampledPoint[p] = stroke->getPointAtLength(len);
len += step;
}
sampledPoint.back() =
stroke->getControlPoint(stroke->getControlPointCount() - 1);
}
//--------------------------------------------------------------------------------------
class TInbetween::Imp {
public:
//----------------------
struct StrokeTransform {
typedef enum { EQUAL, POINT, GENERAL } TransformationType;
TPointD m_translate;
TPointD m_rotationAndScaleCenter;
double m_scaleX, m_scaleY, m_rotation;
TransformationType m_type;
// saved for optimization
TAffine m_inverse;
std::vector<int> m_firstStrokeCornerIndexes;
std::vector<int> m_secondStrokeCornerIndexes;
};
//----------------------
TVectorImageP m_firstImage, m_lastImage;
std::vector<StrokeTransform> m_transformation;
void computeTransformation();
void transferColor(const TVectorImageP &destination) const;
TVectorImageP tween(double t) const;
Imp(const TVectorImageP firstImage, const TVectorImageP lastImage)
: m_firstImage(firstImage), m_lastImage(lastImage) {
computeTransformation();
}
};
//-------------------------------------------------------------------
TInbetween::TInbetween(const TVectorImageP firstImage,
const TVectorImageP lastImage)
: m_imp(new TInbetween::Imp(firstImage, lastImage)) {}
//-------------------------------------------------------------------
TInbetween::~TInbetween() {}
//-------------------------------------------------------------------
void TInbetween::Imp::computeTransformation() {
const UINT samplingPointNumber = 10;
const UINT bboxSamplingWeight = samplingPointNumber / 2;
StrokeTransform transform;
double cs, sn, totalLen1, totalLen2, constK, constQ, constB, constD, constA;
UINT cpCount1, cpCount2;
TPointD stroke1Centroid, stroke2Centroid, stroke1Begin, stroke2Begin,
stroke1End, stroke2End, versor1, versor2;
std::vector<TPointD> samplingPoint1(samplingPointNumber),
samplingPoint2(samplingPointNumber);
TStroke *stroke1, *stroke2;
std::vector<double> ratioSampling, weights, subStrokeXScaling,
subStrokeYScaling;
UINT strokeCount1 = m_firstImage->getStrokeCount();
UINT strokeCount2 = m_lastImage->getStrokeCount();
if (strokeCount1 > strokeCount2) strokeCount1 = strokeCount2;
m_transformation.clear();
m_transformation.reserve(strokeCount1);
const int maxSubSetNum = (strokeCount1) ? 1000 / strokeCount1 : 1;
UINT j, p;
for (UINT i = 0; i < strokeCount1; i++) {
stroke1 = m_firstImage->getStroke(i);
stroke2 = m_lastImage->getStroke(i);
// check if the strokes are equal
cpCount1 = stroke1->getControlPointCount();
cpCount2 = stroke2->getControlPointCount();
transform.m_firstStrokeCornerIndexes.clear();
transform.m_secondStrokeCornerIndexes.clear();
transform.m_translate = TPointD();
transform.m_rotationAndScaleCenter = TPointD();
transform.m_scaleX = 0;
transform.m_scaleY = 0;
transform.m_rotation = 0;
bool isEqual = true;
if (cpCount1 == cpCount2) {
for (j = 0; j < cpCount1 && isEqual; j++) {
isEqual = (stroke1->getControlPoint(j) == stroke2->getControlPoint(j));
}
} else
isEqual = false;
if (isEqual) {
transform.m_type = StrokeTransform::EQUAL;
} else {
totalLen1 = stroke1->getLength();
totalLen2 = stroke2->getLength();
if (totalLen1 == 0 || totalLen2 == 0) {
if (totalLen1 == 0 && totalLen2 == 0) {
transform.m_type = StrokeTransform::POINT;
} else {
transform.m_inverse = TAffine();
transform.m_firstStrokeCornerIndexes.resize(2);
transform.m_firstStrokeCornerIndexes[0] = 0;
transform.m_firstStrokeCornerIndexes[1] = stroke1->getChunkCount();
transform.m_secondStrokeCornerIndexes.resize(2);
transform.m_secondStrokeCornerIndexes[0] = 0;
transform.m_secondStrokeCornerIndexes[1] = stroke2->getChunkCount();
}
} else {
const double startMinAngle = 30.0;
std::vector<std::pair<int, double>> angles1, angles2;
transform.m_type = StrokeTransform::GENERAL;
double minAngle, maxAngle;
int minAngle1, maxAngle1, minAngle2, maxAngle2;
angles1.clear();
angles2.clear();
// TDebugMessage::getStream()<<j<<" stroke1 corner detection";
// TDebugMessage::flush();
detectCorners(stroke1, startMinAngle, angles1, minAngle, maxAngle);
minAngle1 = (int)minAngle;
maxAngle1 = (int)maxAngle;
// TDebugMessage::getStream()<<j<<" stroke2 corner detection";
// TDebugMessage::flush();
detectCorners(stroke2, startMinAngle, angles2, minAngle, maxAngle);
minAngle2 = (int)minAngle;
maxAngle2 = (int)maxAngle;
if (angles1.empty()) angles2.clear();
if (angles2.empty()) angles1.clear();
/*
debugStream.open("c:\\temp\\inbetween.txt", ios_base::out);
debugStream <<"num angoli 1: "<< angles1.size() << endl;
debugStream <<"num angoli 2: "<< angles2.size() << endl;
*/
double bestValue = (std::numeric_limits<double>::max)();
if (angles1.size() != angles2.size()) {
bestValue = (std::numeric_limits<double>::max)();
//--------------------------------------------------------------------------
if (isTooComplex(angles1.size(), angles2.size(), maxSubSetNum)) {
// debugStream <<"is too complex" << endl;
int firstAngle =
(int)((angles1.size() < angles2.size()) ? minAngle2
: minAngle1);
int lastAngle =
(int)((angles1.size() < angles2.size()) ? maxAngle1
: maxAngle2);
int bestAngle = (int)startMinAngle;
if ((int)(angles1.size() + angles2.size()) <
lastAngle - firstAngle + 1) {
double tempAngle;
std::vector<double> sortedAngles1, sortedAngles2;
sortedAngles1.reserve(angles1.size());
sortedAngles2.reserve(angles2.size());
for (j = 0; j < angles1.size(); j++) {
tempAngle = angles1[j].second;
if (tempAngle >= firstAngle && tempAngle <= lastAngle)
sortedAngles1.push_back(tempAngle);
}
for (j = 0; j < angles2.size(); j++) {
tempAngle = angles2[j].second;
if (tempAngle >= firstAngle && tempAngle <= lastAngle)
sortedAngles2.push_back(tempAngle);
}
std::vector<double> sortedAngles(sortedAngles1.size() +
sortedAngles2.size());
std::sort(sortedAngles1.begin(), sortedAngles1.end());
std::sort(sortedAngles2.begin(), sortedAngles2.end());
std::merge(sortedAngles1.begin(), sortedAngles1.end(),
sortedAngles2.begin(), sortedAngles2.end(),
sortedAngles.begin());
for (j = 0; j < sortedAngles.size(); j++) {
int numAng1 = angleNumber(angles1, sortedAngles[j]);
int numAng2 = angleNumber(angles2, sortedAngles[j]);
double val = (numAng1 == numAng2)
? 0
: fabs((float)(numAng1 - numAng2)) /
(numAng1 + numAng2);
if (val < bestValue) {
bestValue = val;
bestAngle = (int)(sortedAngles[j]);
if (bestValue == 0 ||
!isTooComplex(numAng1, numAng2, maxSubSetNum))
break;
}
}
} else //-----------------------------------------------------
{
for (int angle = firstAngle; angle <= lastAngle; angle++) {
int numAng1 = angleNumber(angles1, angle);
int numAng2 = angleNumber(angles2, angle);
double val = (numAng1 == numAng2)
? 0
: fabs((float)(numAng1 - numAng2)) /
(numAng1 + numAng2);
if (val < bestValue) {
bestValue = val;
bestAngle = angle;
if (bestValue == 0 ||
!isTooComplex(numAng1, numAng2, maxSubSetNum))
break;
}
}
}
eraseSmallAngles(angles1, bestAngle);
eraseSmallAngles(angles2, bestAngle);
/*
debugStream <<"bestAngle: "<< bestAngle << endl;
debugStream <<"num angoli 1: "<< angles1.size() << endl;
debugStream <<"num angoli 2: "<< angles2.size() << endl;
*/
}
//--------------------------------------------------------------------------
bestValue = (std::numeric_limits<double>::max)();
if (angles1.size() == angles2.size()) {
transform.m_firstStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles1.size(); j++)
transform.m_firstStrokeCornerIndexes.push_back(angles1[j].first);
transform.m_firstStrokeCornerIndexes.push_back(
stroke1->getChunkCount());
transform.m_secondStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles2.size(); j++)
transform.m_secondStrokeCornerIndexes.push_back(angles2[j].first);
transform.m_secondStrokeCornerIndexes.push_back(
stroke2->getChunkCount());
} else {
if (isTooComplex(angles1.size(), angles2.size(), maxSubSetNum)) {
if (angles1.size() > angles2.size()) {
transform.m_firstStrokeCornerIndexes.resize(angles2.size());
trivialSolution(stroke1, stroke2, angles1, angles2,
transform.m_firstStrokeCornerIndexes);
transform.m_firstStrokeCornerIndexes.insert(
transform.m_firstStrokeCornerIndexes.begin(), 0);
transform.m_firstStrokeCornerIndexes.push_back(
stroke1->getChunkCount());
transform.m_secondStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles2.size(); j++)
transform.m_secondStrokeCornerIndexes.push_back(
angles2[j].first);
transform.m_secondStrokeCornerIndexes.push_back(
stroke2->getChunkCount());
} else {
transform.m_firstStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles1.size(); j++)
transform.m_firstStrokeCornerIndexes.push_back(
angles1[j].first);
transform.m_firstStrokeCornerIndexes.push_back(
stroke1->getChunkCount());
transform.m_secondStrokeCornerIndexes.resize(angles1.size());
trivialSolution(stroke2, stroke1, angles2, angles1,
transform.m_secondStrokeCornerIndexes);
transform.m_secondStrokeCornerIndexes.insert(
transform.m_secondStrokeCornerIndexes.begin(), 0);
transform.m_secondStrokeCornerIndexes.push_back(
stroke2->getChunkCount());
}
} else {
if (angles1.size() > angles2.size()) {
transform.m_firstStrokeCornerIndexes.resize(angles2.size());
findBestSolution(stroke1, stroke2, angles1, angles2, bestValue,
transform.m_firstStrokeCornerIndexes);
transform.m_firstStrokeCornerIndexes.insert(
transform.m_firstStrokeCornerIndexes.begin(), 0);
transform.m_firstStrokeCornerIndexes.push_back(
stroke1->getChunkCount());
transform.m_secondStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles2.size(); j++)
transform.m_secondStrokeCornerIndexes.push_back(
angles2[j].first);
transform.m_secondStrokeCornerIndexes.push_back(
stroke2->getChunkCount());
} else {
transform.m_firstStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles1.size(); j++)
transform.m_firstStrokeCornerIndexes.push_back(
angles1[j].first);
transform.m_firstStrokeCornerIndexes.push_back(
stroke1->getChunkCount());
transform.m_secondStrokeCornerIndexes.resize(angles1.size());
findBestSolution(stroke2, stroke1, angles2, angles1, bestValue,
transform.m_secondStrokeCornerIndexes);
transform.m_secondStrokeCornerIndexes.insert(
transform.m_secondStrokeCornerIndexes.begin(), 0);
transform.m_secondStrokeCornerIndexes.push_back(
stroke2->getChunkCount());
}
}
}
} else {
transform.m_firstStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles1.size(); j++)
transform.m_firstStrokeCornerIndexes.push_back(angles1[j].first);
transform.m_firstStrokeCornerIndexes.push_back(
stroke1->getChunkCount());
transform.m_secondStrokeCornerIndexes.push_back(0);
for (j = 0; j < angles2.size(); j++)
transform.m_secondStrokeCornerIndexes.push_back(angles2[j].first);
transform.m_secondStrokeCornerIndexes.push_back(
stroke2->getChunkCount());
}
UINT cornerSize = transform.m_firstStrokeCornerIndexes.size();
assert(cornerSize == transform.m_secondStrokeCornerIndexes.size());
assert(cornerSize >= 2);
double totalRadRotation = 0;
TStroke *subStroke1 = 0;
TStroke *subStroke2 = 0;
stroke1Centroid = stroke1->getCentroid();
stroke2Centroid = stroke2->getCentroid();
#ifdef _DEBUG
assert(transform.m_firstStrokeCornerIndexes[0] == 0);
assert(transform.m_secondStrokeCornerIndexes[0] == 0);
assert(transform.m_firstStrokeCornerIndexes[cornerSize - 1] ==
stroke1->getChunkCount());
assert(transform.m_secondStrokeCornerIndexes[cornerSize - 1] ==
stroke2->getChunkCount());
for (j = 0; j < cornerSize - 1; j++) {
assert(transform.m_firstStrokeCornerIndexes[j] <
transform.m_firstStrokeCornerIndexes[j + 1]);
assert(transform.m_secondStrokeCornerIndexes[j] <
transform.m_secondStrokeCornerIndexes[j + 1]);
assert(transform.m_firstStrokeCornerIndexes[j] <
stroke1->getChunkCount());
assert(transform.m_secondStrokeCornerIndexes[j] <
stroke2->getChunkCount());
}
#endif
for (j = 0; j < cornerSize - 1; j++) {
///////////////////////////////////////// sampling
subStroke1 = extract(stroke1, transform.m_firstStrokeCornerIndexes[j],
transform.m_firstStrokeCornerIndexes[j + 1] - 1);
sample(subStroke1, samplingPointNumber, samplingPoint1);
subStroke2 =
extract(stroke2, transform.m_secondStrokeCornerIndexes[j],
transform.m_secondStrokeCornerIndexes[j + 1] - 1);
sample(subStroke2, samplingPointNumber, samplingPoint2);
///////////////////////////////////////// compute Rotation
ratioSampling.clear();
ratioSampling.reserve(samplingPointNumber);
weights.clear();
weights.reserve(samplingPointNumber);
TPointD pOld, pNew;
// double totalW=0;
for (p = 0; p < samplingPointNumber; p++) {
pOld = samplingPoint1[p];
pNew = samplingPoint2[p];
if (pOld == stroke1Centroid) continue;
if (pNew == stroke2Centroid) continue;
versor1 = normalize(pOld - stroke1Centroid);
versor2 = normalize(pNew - stroke2Centroid);
weights.push_back(tdistance(pOld, stroke1Centroid) +
tdistance(pNew, stroke2Centroid));
cs = versor1 * versor2;
sn = cross(versor1, versor2);
double v = atan2(sn, cs);
ratioSampling.push_back(v);
}
delete subStroke1;
delete subStroke2;
subStroke1 = 0;
subStroke2 = 0;
double radRotation = weightedAverage(ratioSampling, weights);
totalRadRotation += radRotation;
}
totalRadRotation /= (cornerSize - 1);
transform.m_rotation = totalRadRotation * M_180_PI;
if (isAlmostZero(transform.m_rotation, 2)) {
transform.m_rotation = 0.0;
totalRadRotation = 0.0;
}
#ifdef _DEBUG
// TDebugMessage::getStream()<<"rotation "<< transform.m_rotation;
// TDebugMessage::flush();
#endif
///////////////////////////////////////// compute Scale
if (transform.m_rotation == 0.0) {
subStrokeXScaling.clear();
subStrokeXScaling.reserve(cornerSize - 1);
subStrokeYScaling.clear();
subStrokeYScaling.reserve(cornerSize - 1);
for (j = 0; j < cornerSize - 1; j++) {
///////////////////////////////////////// sampling
subStroke1 =
extract(stroke1, transform.m_firstStrokeCornerIndexes[j],
transform.m_firstStrokeCornerIndexes[j + 1] - 1);
sample(subStroke1, samplingPointNumber, samplingPoint1);
subStroke2 =
extract(stroke2, transform.m_secondStrokeCornerIndexes[j],
transform.m_secondStrokeCornerIndexes[j + 1] - 1);
sample(subStroke2, samplingPointNumber, samplingPoint2);
///////////////////////////////////////// compute X Scale
ratioSampling.clear();
ratioSampling.reserve(samplingPointNumber + bboxSamplingWeight);
double appX, appY;
TPointD appPoint;
double bboxXMin, bboxYMin, bboxXMax, bboxYMax;
bboxXMin = bboxYMin = (std::numeric_limits<double>::max)();
bboxXMax = bboxYMax = -(std::numeric_limits<double>::max)();
int h;
for (h = 0; h < subStroke1->getControlPointCount(); ++h) {
appPoint = subStroke1->getControlPoint(h);
if (appPoint.x < bboxXMin) bboxXMin = appPoint.x;
if (appPoint.x > bboxXMax) bboxXMax = appPoint.x;
if (appPoint.y < bboxYMin) bboxYMin = appPoint.y;
if (appPoint.y > bboxYMax) bboxYMax = appPoint.y;
}
appX = bboxXMax - bboxXMin;
appY = bboxYMax - bboxYMin;
if (appX) {
bboxXMin = (std::numeric_limits<double>::max)();
bboxXMax = -(std::numeric_limits<double>::max)();
for (h = 0; h < subStroke2->getControlPointCount(); ++h) {
appPoint = subStroke2->getControlPoint(h);
if (appPoint.x < bboxXMin) bboxXMin = appPoint.x;
if (appPoint.x > bboxXMax) bboxXMax = appPoint.x;
}
appX = (isAlmostZero(appX, 1e-01)) ? -1
: (bboxXMax - bboxXMin) / appX;
for (UINT tms = 0; tms < bboxSamplingWeight && appX >= 0; tms++)
ratioSampling.push_back(appX);
for (p = 0; p < samplingPointNumber; p++) {
appX = fabs(samplingPoint1[p].x - stroke1Centroid.x);
if (appX)
ratioSampling.push_back(
fabs(samplingPoint2[p].x - stroke2Centroid.x) / appX);
}
if (!ratioSampling.empty()) {
subStrokeXScaling.push_back(average(ratioSampling));
}
}
///////////////////////////////////////// compute Y Scale
ratioSampling.clear();
ratioSampling.reserve(samplingPointNumber + bboxSamplingWeight);
if (appY) {
bboxYMin = (std::numeric_limits<double>::max)();
bboxYMax = -(std::numeric_limits<double>::max)();
for (h = 0; h < subStroke2->getControlPointCount(); ++h) {
appPoint = subStroke2->getControlPoint(h);
if (appPoint.y < bboxYMin) bboxYMin = appPoint.y;
if (appPoint.y > bboxYMax) bboxYMax = appPoint.y;
}
appY = (isAlmostZero(appY, 1e-01)) ? -1
: (bboxYMax - bboxYMin) / appY;
for (UINT tms = 0; tms < bboxSamplingWeight && appY >= 0; tms++)
ratioSampling.push_back(appY);
for (p = 0; p < samplingPointNumber; p++) {
appY = fabs(samplingPoint1[p].y - stroke1Centroid.y);
if (appY)
ratioSampling.push_back(
fabs(samplingPoint2[p].y - stroke2Centroid.y) / appY);
}
if (!ratioSampling.empty()) {
subStrokeYScaling.push_back(average(ratioSampling));
}
}
delete subStroke1;
delete subStroke2;
subStroke1 = 0;
subStroke2 = 0;
}
if (subStrokeXScaling.empty()) {
transform.m_scaleX = 1.0;
} else {
transform.m_scaleX = average(subStrokeXScaling);
if (isAlmostZero(transform.m_scaleX - 1.0))
transform.m_scaleX = 1.0;
}
if (subStrokeYScaling.empty()) {
transform.m_scaleY = 1.0;
} else {
transform.m_scaleY = average(subStrokeYScaling);
if (isAlmostZero(transform.m_scaleY - 1.0))
transform.m_scaleY = 1.0;
}
/*
#ifdef _DEBUG
TDebugMessage::getStream()<<"x scale "<< transform.m_scaleX ;
TDebugMessage::flush();
TDebugMessage::getStream()<<"y scale "<< transform.m_scaleY ;
TDebugMessage::flush();
#endif
*/
} else {
subStrokeXScaling.clear();
subStrokeXScaling.reserve(cornerSize - 1);
for (j = 0; j < cornerSize - 1; j++) {
///////////////////////////////////////// sampling
subStroke1 =
extract(stroke1, transform.m_firstStrokeCornerIndexes[j],
transform.m_firstStrokeCornerIndexes[j + 1] - 1);
sample(subStroke1, samplingPointNumber, samplingPoint1);
subStroke2 =
extract(stroke2, transform.m_secondStrokeCornerIndexes[j],
transform.m_secondStrokeCornerIndexes[j + 1] - 1);
sample(subStroke2, samplingPointNumber, samplingPoint2);
///////////////////////////////////////// compute Scale
ratioSampling.clear();
ratioSampling.reserve(samplingPointNumber + bboxSamplingWeight);
TRectD bbox1 = subStroke1->getBBox();
double app = tdistance2(bbox1.getP00(), bbox1.getP11());
if (app) {
TRectD bbox2 =
TRotation(transform.m_rotation).inv() * subStroke2->getBBox();
app = sqrt(tdistance2(bbox2.getP00(), bbox2.getP11()) / app);
for (UINT tms = 0; tms < bboxSamplingWeight; tms++)
ratioSampling.push_back(app);
double app;
for (p = 0; p < samplingPointNumber; p++) {
app = tdistance(samplingPoint1[p], stroke1Centroid);
if (app) {
ratioSampling.push_back(
tdistance(samplingPoint2[p], stroke2Centroid) / app);
}
}
}
if (!ratioSampling.empty()) {
subStrokeXScaling.push_back(average(ratioSampling));
}
delete subStroke1;
delete subStroke2;
subStroke1 = 0;
subStroke2 = 0;
}
if (subStrokeXScaling.empty()) {
transform.m_scaleX = transform.m_scaleY = 1.0;
} else {
transform.m_scaleX = transform.m_scaleY =
average(subStrokeXScaling);
if (isAlmostZero(transform.m_scaleX - 1.0, 0.00001))
transform.m_scaleX = transform.m_scaleY = 1.0;
}
/*
#ifdef _DEBUG
TDebugMessage::getStream()<<"scale "<< transform.m_scaleX ;
TDebugMessage::flush();
#endif
*/
}
///////////////////////////////////////// compute centre of Rotation and
/// Scaling
std::vector<TPointD> vpOld(cornerSize), vpNew(cornerSize);
TPointD pOld, pNew;
for (j = 0; j < cornerSize - 1; j++) {
vpOld[j] = stroke1->getChunk(transform.m_firstStrokeCornerIndexes[j])
->getP0();
vpNew[j] = stroke2->getChunk(transform.m_secondStrokeCornerIndexes[j])
->getP0();
}
vpOld[j] = stroke1->getControlPoint(stroke1->getControlPointCount());
vpNew[j] = stroke2->getControlPoint(stroke2->getControlPointCount());
if (transform.m_rotation == 0.0) {
if (transform.m_scaleX == 1.0 && transform.m_scaleY == 1.0) {
transform.m_translate = stroke2Centroid - stroke1Centroid;
transform.m_rotationAndScaleCenter = TPointD();
} else {
if (transform.m_scaleX == 1.0) {
transform.m_rotationAndScaleCenter.x = 0;
transform.m_translate.x = 0;
for (j = 0; j < cornerSize; j++) {
transform.m_translate.x += vpNew[j].x - vpOld[j].x;
}
transform.m_translate.x = transform.m_translate.x / cornerSize;
} else {
transform.m_rotationAndScaleCenter.x = 0;
for (j = 0; j < cornerSize; j++) {
pOld = vpOld[j];
pNew = vpNew[j];
transform.m_rotationAndScaleCenter.x +=
(transform.m_scaleX * pOld.x - pNew.x) /
(transform.m_scaleX - 1.0);
}
transform.m_rotationAndScaleCenter.x =
transform.m_rotationAndScaleCenter.x / cornerSize;
transform.m_translate.x = 0;
}
if (transform.m_scaleY == 1.0) {
transform.m_rotationAndScaleCenter.y = 0;
transform.m_translate.y = 0;
for (j = 0; j < cornerSize; j++) {
transform.m_translate.y += vpNew[j].y - vpOld[j].y;
}
transform.m_translate.y = transform.m_translate.y / cornerSize;
} else {
transform.m_rotationAndScaleCenter.y = 0;
for (j = 0; j < cornerSize; j++) {
pOld = vpOld[j];
pNew = vpNew[j];
transform.m_rotationAndScaleCenter.y +=
(transform.m_scaleY * pOld.y - pNew.y) /
(transform.m_scaleY - 1.0);
}
transform.m_rotationAndScaleCenter.y =
transform.m_rotationAndScaleCenter.y / cornerSize;
transform.m_translate.y = 0;
}
}
} else {
assert(transform.m_scaleX == transform.m_scaleY);
cs = transform.m_scaleX * cos(totalRadRotation);
sn = transform.m_scaleX * sin(totalRadRotation);
// scelgo punti da usare come vincolo, per ottenere la translazione,
// dato un centro di rotazione
// dato il punto pOld e pNew si calcola analiticamnete il punto di
// rotazione e scala
// che minimizza la traslazione aggiuntiva e la traslazione stessa
for (j = 0; j < cornerSize; j++) {
pOld = vpOld[j];
pNew = vpNew[j];
constK = pNew.x - cs * pOld.x + sn * pOld.y;
constQ = pNew.y - sn * pOld.x - cs * pOld.y;
constB = 2 * (constK * (cs - 1.) + sn * constQ);
constD = 2 * (constQ * (cs - 1.) - sn * constK);
constA = transform.m_scaleX * transform.m_scaleX + 1 - 2 * cs;
assert(constA > 0);
constA = 1.0 / (2 * constA);
transform.m_rotationAndScaleCenter.x += -constB * constA;
transform.m_rotationAndScaleCenter.y += -constD * constA;
}
transform.m_rotationAndScaleCenter =
transform.m_rotationAndScaleCenter * (1.0 / (double)cornerSize);
transform.m_translate.x =
(cs - 1.0) * transform.m_rotationAndScaleCenter.x -
sn * transform.m_rotationAndScaleCenter.y + constK;
transform.m_translate.y =
sn * transform.m_rotationAndScaleCenter.x +
(cs - 1.0) * transform.m_rotationAndScaleCenter.y + constQ;
}
/////////////////////////////////////////
transform.m_inverse = (TTranslation(transform.m_translate) *
TScale(transform.m_rotationAndScaleCenter,
transform.m_scaleX, transform.m_scaleY) *
TRotation(transform.m_rotationAndScaleCenter,
transform.m_rotation))
.inv();
// debugStream.close();
} // end if !isPoint
} // end if !isEqual
m_transformation.push_back(transform);
} // end for each stroke
}
//-------------------------------------------------------------------
TVectorImageP TInbetween::Imp::tween(double t) const {
const double step = 5.0;
const double interpolateError = 1.0;
TVectorImageP vi = new TVectorImage;
UINT strokeCount1 = m_firstImage->getStrokeCount();
UINT strokeCount2 = m_lastImage->getStrokeCount();
vi->setPalette(m_firstImage->getPalette());
if (strokeCount1 > strokeCount2) strokeCount1 = strokeCount2;
assert(m_transformation.size() == strokeCount1);
double totalLen1, totalLen2, len1, len2, step1, step2;
std::vector<TThickPoint> points;
TStroke *stroke1, *stroke2, *subStroke1, *subStroke2, *stroke;
TAffine mt, invMatrix;
TThickPoint point2, finalPoint;
UINT i, j, cp, cpSize;
for (i = 0; i < strokeCount1; i++) {
stroke1 = m_firstImage->getStroke(i);
stroke2 = m_lastImage->getStroke(i);
if (m_transformation[i].m_type == StrokeTransform::EQUAL) {
stroke = new TStroke(*stroke1);
} else {
points.clear();
totalLen1 = stroke1->getLength();
totalLen2 = stroke2->getLength();
;
if (stroke1->getControlPointCount() == stroke2->getControlPointCount() &&
stroke1->isSelfLoop() && stroke2->isSelfLoop()) {
for (int i = 0; i < stroke1->getControlPointCount(); i++) {
TThickPoint p0 = stroke1->getControlPoint(i);
TThickPoint p1 = stroke2->getControlPoint(i);
points.push_back(p0 * (1 - t) + p1 * t);
}
stroke = new TStroke(points);
} else if (m_transformation[i].m_type == StrokeTransform::POINT) {
TThickPoint pOld = stroke1->getThickPointAtLength(0.5 * totalLen1);
TThickPoint pNew = stroke2->getThickPointAtLength(0.5 * totalLen2);
points.push_back(pOld * (1 - t) + pNew * t);
points.push_back(points[0]);
points.push_back(points[0]);
stroke = new TStroke(points);
} else {
mt = (m_transformation[i].m_inverse.isIdentity())
? TAffine()
: TTranslation(m_transformation[i].m_translate * t) *
TScale(m_transformation[i].m_rotationAndScaleCenter,
(1 - t) + t * m_transformation[i].m_scaleX,
(1 - t) + t * m_transformation[i].m_scaleY) *
TRotation(m_transformation[i].m_rotationAndScaleCenter,
m_transformation[i].m_rotation * t);
UINT cornerSize = m_transformation[i].m_firstStrokeCornerIndexes.size();
assert(cornerSize ==
m_transformation[i].m_secondStrokeCornerIndexes.size());
if (cornerSize > m_transformation[i].m_secondStrokeCornerIndexes.size())
cornerSize = m_transformation[i].m_secondStrokeCornerIndexes.size();
assert(cornerSize >= 2);
std::vector<TThickPoint> controlPoints;
// if not m_transformation[i].m_findCorners => detect corner return
// different size =>cornerSize==2
// assert(!m_transformation[i].m_findCorners || cornerSize==2);
for (j = 0; j < cornerSize - 1; j++) {
points.clear();
subStroke1 = extract(
stroke1, m_transformation[i].m_firstStrokeCornerIndexes[j],
m_transformation[i].m_firstStrokeCornerIndexes[j + 1] - 1);
subStroke2 = extract(
stroke2, m_transformation[i].m_secondStrokeCornerIndexes[j],
m_transformation[i].m_secondStrokeCornerIndexes[j + 1] - 1);
totalLen1 = subStroke1->getLength();
totalLen2 = subStroke2->getLength();
if (totalLen1 > totalLen2) {
step1 = step;
step2 = (totalLen2 / totalLen1) * step;
} else {
step1 = (totalLen1 / totalLen2) * step;
step2 = step;
}
len1 = 0;
len2 = 0;
while (len1 <= totalLen1 && len2 <= totalLen2) {
point2 = subStroke2->getThickPointAtLength(len2);
point2 = TThickPoint(m_transformation[i].m_inverse *
subStroke2->getThickPointAtLength(len2),
point2.thick);
finalPoint =
subStroke1->getThickPointAtLength(len1) * (1 - t) + t * point2;
points.push_back(TThickPoint(mt * (finalPoint), finalPoint.thick));
len1 += step1;
len2 += step2;
}
point2 = subStroke2->getThickPointAtLength(totalLen2);
point2 = TThickPoint(m_transformation[i].m_inverse *
subStroke2->getThickPointAtLength(totalLen2),
point2.thick);
finalPoint = subStroke1->getThickPointAtLength(totalLen1) * (1 - t) +
t * point2;
points.push_back(TThickPoint(mt * (finalPoint), finalPoint.thick));
stroke = TStroke::interpolate(points, interpolateError, false
/*m_transformation[i].m_findCorners*/);
if (j == 0)
controlPoints.push_back(stroke->getControlPoint(0));
else
controlPoints.back() =
(controlPoints.back() + stroke->getControlPoint(0)) * 0.5;
cpSize = stroke->getControlPointCount();
for (cp = 1; cp < cpSize; cp++) {
controlPoints.push_back(stroke->getControlPoint(cp));
}
delete subStroke1;
delete subStroke2;
delete stroke;
subStroke1 = 0;
subStroke2 = 0;
stroke = 0;
}
stroke = new TStroke(controlPoints);
}
}
if (stroke1->isSelfLoop() && stroke2->isSelfLoop()) stroke->setSelfLoop();
stroke->setStyle(stroke1->getStyle());
stroke->outlineOptions() = stroke1->outlineOptions();
VIStroke *vs =
new VIStroke(stroke, m_firstImage->getVIStroke(i)->m_groupId);
vi->m_imp->m_strokes.push_back(vs);
} // end for each stroke
if (m_firstImage->isComputedRegionAlmostOnce()) transferColor(vi);
return vi;
}
//-------------------------------------------------------------------
void TInbetween::Imp::transferColor(const TVectorImageP &destination) const {
const TVectorImageP &original = m_firstImage;
destination->setPalette(original->getPalette());
destination->findRegions();
if (destination->getRegionCount()) {
UINT strokeCount1 = original->getStrokeCount();
UINT strokeCount2 = destination->getStrokeCount();
if (strokeCount1 > strokeCount2) strokeCount1 = strokeCount2;
for (UINT i = 0; i < strokeCount1; i++) {
TVectorImage::transferStrokeColors(original, i, destination, i);
}
}
}
//-------------------------------------------------------------------
TVectorImageP TInbetween::tween(double t) const { return m_imp->tween(t); }
//-------------------------------------------------------------------
double TInbetween::interpolation(double t, enum TweenAlgorithm algorithm) {
// in tutte le interpolazioni : s(0) = 0, s(1) = 1
switch (algorithm) {
case EaseInInterpolation: // s'(1) = 0
return t * (2 - t);
case EaseOutInterpolation: // s'(0) = 0
return t * t;
case EaseInOutInterpolation: // s'(0) = s'(1) = 0
return t * t * (3 - 2 * t);
case LinearInterpolation:
default:
return t;
}
}
//-------------------------------------------------------------------