/*! @file izmax1.c
* \brief Finds the index of the element whose real part has maximum absolute value
*
* <pre>
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
* </pre>
*/
#include <math.h>
#include "slu_dcomplex.h"
#include "slu_Cnames.h"
/*! \brief
<pre>
Purpose
=======
IZMAX1 finds the index of the element whose real part has maximum
absolute value.
Based on IZAMAX from Level 1 BLAS.
The change is to use the 'genuine' absolute value.
Contributed by Nick Higham for use with ZLACON.
Arguments
=========
N (input) INT
The number of elements in the vector CX.
CX (input) COMPLEX*16 array, dimension (N)
The vector whose elements will be summed.
INCX (input) INT
The spacing between successive values of CX. INCX >= 1.
=====================================================================
</pre>
*/
int
izmax1_(int *n, doublecomplex *cx, int *incx)
{
/* System generated locals */
int ret_val, i__1, i__2;
double d__1;
/* Local variables */
double smax;
int i, ix;
#define CX(I) cx[(I)-1]
ret_val = 0;
if (*n < 1) {
return ret_val;
}
ret_val = 1;
if (*n == 1) {
return ret_val;
}
if (*incx == 1) {
goto L30;
}
/* CODE FOR INCREMENT NOT EQUAL TO 1 */
ix = 1;
smax = (d__1 = CX(1).r, fabs(d__1));
ix += *incx;
i__1 = *n;
for (i = 2; i <= *n; ++i) {
i__2 = ix;
if ((d__1 = CX(ix).r, fabs(d__1)) <= smax) {
goto L10;
}
ret_val = i;
i__2 = ix;
smax = (d__1 = CX(ix).r, fabs(d__1));
L10:
ix += *incx;
/* L20: */
}
return ret_val;
/* CODE FOR INCREMENT EQUAL TO 1 */
L30:
smax = (d__1 = CX(1).r, fabs(d__1));
i__1 = *n;
for (i = 2; i <= *n; ++i) {
i__2 = i;
if ((d__1 = CX(i).r, fabs(d__1)) <= smax) {
goto L40;
}
ret_val = i;
i__2 = i;
smax = (d__1 = CX(i).r, fabs(d__1));
L40:
;
}
return ret_val;
/* End of IZMAX1 */
} /* izmax1_ */