/*------------------------------------
Iwa_MotionBlurCompFx
Motion blur fx considering the exposure of light and trajectory of the object.
Available to composite exposure value with background.
//------------------------------------*/
#include "iwa_motionblurfx.h"
#include "tfxattributes.h"
#include "toonz/tstageobject.h"
#include "trop.h"
/* Normalize the source image to 0 - 1 and read it into the host memory.
* Check if the source image is premultiped or not here, if it is not specified
* in the combo box. */
template <typename RASTER, typename PIXEL>
bool Iwa_MotionBlurCompFx::setSourceRaster(const RASTER srcRas, float4 *dstMem,
TDimensionI dim,
PremultiTypes type) {
bool isPremultiplied = (type == SOURCE_IS_NOT_PREMUTIPLIED) ? false : true;
float4 *chann_p = dstMem;
float threshold = 100.0 / (float)TPixel64::maxChannelValue;
int max = 0;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = srcRas->pixels(j);
for (int i = 0; i < dim.lx; i++) {
(*chann_p).x = (float)pix->r / (float)PIXEL::maxChannelValue;
(*chann_p).y = (float)pix->g / (float)PIXEL::maxChannelValue;
(*chann_p).z = (float)pix->b / (float)PIXEL::maxChannelValue;
(*chann_p).w = (float)pix->m / (float)PIXEL::maxChannelValue;
/* If there are pixels whose RGB values are larger than the alpha
* channel, determine the source is not premutiplied */
// CAUTION: this condition won't work properly ith HDR image pixels!
if (type == AUTO && isPremultiplied &&
(((*chann_p).x > (*chann_p).w && (*chann_p).x > threshold) ||
((*chann_p).y > (*chann_p).w && (*chann_p).y > threshold) ||
((*chann_p).z > (*chann_p).w && (*chann_p).z > threshold)))
isPremultiplied = false;
pix++;
chann_p++;
}
}
if (isPremultiplied) {
chann_p = dstMem;
for (int i = 0; i < dim.lx * dim.ly; i++, chann_p++) {
if ((*chann_p).x > (*chann_p).w) (*chann_p).x = (*chann_p).w;
if ((*chann_p).y > (*chann_p).w) (*chann_p).y = (*chann_p).w;
if ((*chann_p).z > (*chann_p).w) (*chann_p).z = (*chann_p).w;
}
}
return isPremultiplied;
}
/*------------------------------------------------------------
Convert output result to Channel value and store it in the tile
------------------------------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_MotionBlurCompFx::setOutputRaster(float4 *srcMem, const RASTER dstRas,
TDimensionI dim, int2 margin) {
int out_j = 0;
for (int j = margin.y; j < dstRas->getLy() + margin.y; j++, out_j++) {
PIXEL *pix = dstRas->pixels(out_j);
float4 *chan_p = srcMem;
chan_p += j * dim.lx + margin.x;
for (int i = 0; i < dstRas->getLx(); i++) {
float val;
val = (*chan_p).x * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = (*chan_p).y * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = (*chan_p).z * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = (*chan_p).w * (float)PIXEL::maxChannelValue + 0.5f;
pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
pix++;
chan_p++;
}
}
}
template <>
void Iwa_MotionBlurCompFx::setOutputRaster<TRasterFP, TPixelF>(
float4 *srcMem, const TRasterFP dstRas, TDimensionI dim, int2 margin) {
int out_j = 0;
for (int j = margin.y; j < dstRas->getLy() + margin.y; j++, out_j++) {
TPixelF *pix = dstRas->pixels(out_j);
float4 *chan_p = srcMem;
chan_p += j * dim.lx + margin.x;
for (int i = 0; i < dstRas->getLx(); i++) {
pix->r = (*chan_p).x;
pix->g = (*chan_p).y;
pix->b = (*chan_p).z;
pix->m = (*chan_p).w;
pix++;
chan_p++;
}
}
}
/*------------------------------------------------------------
Create and normalize filters
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::makeMotionBlurFilter_CPU(
float *filter_p, TDimensionI &filterDim, int marginLeft, int marginBottom,
float4 *pointsTable, int pointAmount, float startValue, float startCurve,
float endValue, float endCurve) {
/* Variable for adding filter value*/
float fil_val_sum = 0.0f;
/* The current filter position to be looped in the 'for' statement */
float *current_fil_p = filter_p;
/* For each coordinate in the filter */
for (int fily = 0; fily < filterDim.ly; fily++) {
for (int filx = 0; filx < filterDim.lx; filx++, current_fil_p++) {
/* Get filter coordinates */
float2 pos = {static_cast<float>(filx - marginLeft),
static_cast<float>(fily - marginBottom)};
/* Value to be updated */
float nearestDist2 = 100.0f;
int nearestIndex = -1;
float nearestFramePosRatio = 0.0f;
/* Find the nearest point for each pair of sample points */
for (int v = 0; v < pointAmount - 1; v++) {
float4 p0 = pointsTable[v];
float4 p1 = pointsTable[v + 1];
/* If it is not within the range, continue */
if (pos.x < std::min(p0.x, p1.x) - 1.0f ||
pos.x > std::max(p0.x, p1.x) + 1.0f ||
pos.y < std::min(p0.y, p1.y) - 1.0f ||
pos.y > std::max(p0.y, p1.y) + 1.0f)
continue;
/* Since it is within the range, obtain the distance between the line
* segment and the point. */
/* Calculate the inner product of 'p0'->sampling point and 'p0'->'p1' */
float2 vec_p0_sample = {static_cast<float>(pos.x - p0.x),
static_cast<float>(pos.y - p0.y)};
float2 vec_p0_p1 = {static_cast<float>(p1.x - p0.x),
static_cast<float>(p1.y - p0.y)};
float dot =
vec_p0_sample.x * vec_p0_p1.x + vec_p0_sample.y * vec_p0_p1.y;
/* Calculate the square of distance */
float dist2;
float framePosRatio;
/* If it is before 'p0' */
if (dot <= 0.0f) {
dist2 = vec_p0_sample.x * vec_p0_sample.x +
vec_p0_sample.y * vec_p0_sample.y;
framePosRatio = 0.0f;
} else {
/* Calculate the square of the length of the trajectory vector */
float length2 = p0.z * p0.z;
/* If it is between 'p0' and 'p1'
* If the trajectory at p is a point,
* 'length2' becomes 0, so it will never fall into this condition.
* So, there should not be worry of becoming ZeroDivide. */
if (dot < length2) {
float p0_sample_dist2 = vec_p0_sample.x * vec_p0_sample.x +
vec_p0_sample.y * vec_p0_sample.y;
dist2 = p0_sample_dist2 - dot * dot / length2;
framePosRatio = dot / length2;
}
/* If it is before 'p1' */
else {
float2 vec_p1_sample = {pos.x - p1.x, pos.y - p1.y};
dist2 = vec_p1_sample.x * vec_p1_sample.x +
vec_p1_sample.y * vec_p1_sample.y;
framePosRatio = 1.0f;
}
}
/* If the distance is farther than (√ 2 + 1) / 2, continue
* Because it is a comparison with dist2, the value is squared */
if (dist2 > 1.4571f) continue;
/* Update if distance is closer */
if (dist2 < nearestDist2) {
nearestDist2 = dist2;
nearestIndex = v;
nearestFramePosRatio = framePosRatio;
}
}
/* If neighborhood vector of the current pixel can not be found,
* set the filter value to 0 and return */
if (nearestIndex == -1) {
*current_fil_p = 0.0f;
continue;
}
/* Count how many subpixels (16 * 16) of the current pixel
* are in the range 0.5 from the neighborhood vector.
*/
int count = 0;
float4 np0 = pointsTable[nearestIndex];
float4 np1 = pointsTable[nearestIndex + 1];
for (int yy = 0; yy < 16; yy++) {
/* Y coordinate of the subpixel */
float subPosY = pos.y + ((float)yy - 7.5f) / 16.0f;
for (int xx = 0; xx < 16; xx++) {
/* X coordinate of the subpixel */
float subPosX = pos.x + ((float)xx - 7.5f) / 16.0f;
float2 vec_np0_sub = {subPosX - np0.x, subPosY - np0.y};
float2 vec_np0_np1 = {np1.x - np0.x, np1.y - np0.y};
float dot =
vec_np0_sub.x * vec_np0_np1.x + vec_np0_sub.y * vec_np0_np1.y;
/* Calculate the square of the distance */
float dist2;
/* If it is before 'p0' */
if (dot <= 0.0f)
dist2 =
vec_np0_sub.x * vec_np0_sub.x + vec_np0_sub.y * vec_np0_sub.y;
else {
/* Compute the square of the length of the trajectory vector */
float length2 = np0.z * np0.z;
/* If it is between 'p0' and 'p1' */
if (dot < length2) {
float np0_sub_dist2 =
vec_np0_sub.x * vec_np0_sub.x + vec_np0_sub.y * vec_np0_sub.y;
dist2 = np0_sub_dist2 - dot * dot / length2;
}
/* if it is before 'p1' */
else {
float2 vec_np1_sub = {subPosX - np1.x, subPosY - np1.y};
dist2 =
vec_np1_sub.x * vec_np1_sub.x + vec_np1_sub.y * vec_np1_sub.y;
}
}
/* Increment count if squared distance is less than 0.25 */
if (dist2 <= 0.25f) count++;
}
}
/* 'safeguard' - If the count is 0, set the field value to 0 and return.
*/
if (count == 0) {
*current_fil_p = 0.0f;
continue;
}
/* Count is 256 at a maximum */
float countRatio = (float)count / 256.0f;
/* The brightness of the filter value is inversely proportional
* to the area of the line of width 1 made by the vector.
*
* Since there are semicircular caps with radius 0.5
* before and after the vector, it will never be 0-divide
* even if the length of vector is 0.
*/
/* Area of the neighborhood vector when width = 1 */
float vecMenseki = 0.25f * 3.14159265f + np0.z;
//-----------------
/* Next, get the value of the gamma strength */
/* Offset value of the frame of the neighbor point */
float curveValue;
float frameOffset =
np0.w * (1.0f - nearestFramePosRatio) + np1.w * nearestFramePosRatio;
/* If the frame is exactly at the frame origin,
* or there is no attenuation value, set curveValue to 1 */
if (frameOffset == 0.0f || (frameOffset < 0.0f && startValue == 1.0f) ||
(frameOffset > 0.0f && endValue == 1.0f))
curveValue = 1.0f;
else {
/* Change according to positive / negative of offset */
float value, curve, ratio;
if (frameOffset < 0.0f) /* Start side */
{
value = startValue;
curve = startCurve;
ratio = 1.0f - (frameOffset / pointsTable[0].w);
} else {
value = endValue;
curve = endCurve;
ratio = 1.0f - (frameOffset / pointsTable[pointAmount - 1].w);
}
curveValue = value + (1.0f - value) * powf(ratio, 1.0f / curve);
}
//-----------------
/* Store field value */
*current_fil_p = curveValue * countRatio / vecMenseki;
fil_val_sum += *current_fil_p;
}
}
/* Normalization */
current_fil_p = filter_p;
for (int f = 0; f < filterDim.lx * filterDim.ly; f++, current_fil_p++) {
*current_fil_p /= fil_val_sum;
}
}
/*------------------------------------------------------------
Create afterimage filter and normalize
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::makeZanzoFilter_CPU(
float *filter_p, TDimensionI &filterDim, int marginLeft, int marginBottom,
float4 *pointsTable, int pointAmount, float startValue, float startCurve,
float endValue, float endCurve) {
/* Variable for adding filter value */
float fil_val_sum = 0.0f;
/* The current filter position to be looped in the 'for' statement */
float *current_fil_p = filter_p;
/* For each coordinate in the filter */
for (int fily = 0; fily < filterDim.ly; fily++) {
for (int filx = 0; filx < filterDim.lx; filx++, current_fil_p++) {
/* Get filter coordinates */
float2 pos = {(float)(filx - marginLeft), (float)(fily - marginBottom)};
/* Variable to be accumulated */
float filter_sum = 0.0f;
/* Measure the distance for each sample point and accumulate the density
*/
for (int v = 0; v < pointAmount; v++) {
float4 p0 = pointsTable[v];
/* If it is not within the distance 1 around the coordinates of 'p0',
* continue */
if (pos.x < p0.x - 1.0f || pos.x > p0.x + 1.0f || pos.y < p0.y - 1.0f ||
pos.y > p0.y + 1.0f)
continue;
/* Linear interpolation with 4 neighboring pixels */
float xRatio = 1.0f - std::abs(pos.x - p0.x);
float yRatio = 1.0f - std::abs(pos.y - p0.y);
/* Next, get the value of the gamma strength */
/* Offset value of the frame of the neighbor point */
float curveValue;
float frameOffset = p0.w;
/* If the frame is exactly at the frame origin,
* or there is no attenuation value, set curveValue to 1 */
if (frameOffset == 0.0f || (frameOffset < 0.0f && startValue == 1.0f) ||
(frameOffset > 0.0f && endValue == 1.0f))
curveValue = 1.0f;
else {
/* Change according to positive / negative of offset */
float value, curve, ratio;
if (frameOffset < 0.0f) /* Start side */
{
value = startValue;
curve = startCurve;
ratio = 1.0f - (frameOffset / pointsTable[0].w);
} else {
value = endValue;
curve = endCurve;
ratio = 1.0f - (frameOffset / pointsTable[pointAmount - 1].w);
}
curveValue = value + (1.0f - value) * powf(ratio, 1.0f / curve);
}
//-----------------
/* Filter value integration */
filter_sum += xRatio * yRatio * curveValue;
}
/* Store value */
*current_fil_p = filter_sum;
fil_val_sum += *current_fil_p;
}
}
/* Normalization */
current_fil_p = filter_p;
for (int f = 0; f < filterDim.lx * filterDim.ly; f++, current_fil_p++) {
*current_fil_p /= fil_val_sum;
}
}
/*------------------------------------------------------------
Unpremultiply -> convert to exposure value -> premultiply
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::convertRGBtoExposure_CPU(
float4 *in_tile_p, TDimensionI &dim, const ExposureConverter &conv,
bool sourceIsPremultiplied) {
float4 *cur_tile_p = in_tile_p;
for (int i = 0; i < dim.lx * dim.ly; i++, cur_tile_p++) {
/* if alpha is 0, return */
if (cur_tile_p->w == 0.0f) {
cur_tile_p->x = 0.0f;
cur_tile_p->y = 0.0f;
cur_tile_p->z = 0.0f;
continue;
}
/* Unpremultiply on sources that are premultiplied, such as regular Level.
* It is not done for 'digital overlay' (image with alpha mask added by
* using Photoshop, as known as 'DigiBook' in Japanese animation industry)
* etc. */
if (sourceIsPremultiplied) {
/* unpremultiply */
cur_tile_p->x /= cur_tile_p->w;
cur_tile_p->y /= cur_tile_p->w;
cur_tile_p->z /= cur_tile_p->w;
}
/* convert RGB to Exposure */
cur_tile_p->x = conv.valueToExposure(cur_tile_p->x);
cur_tile_p->y = conv.valueToExposure(cur_tile_p->y);
cur_tile_p->z = conv.valueToExposure(cur_tile_p->z);
/* Then multiply with the alpha channel */
cur_tile_p->x *= cur_tile_p->w;
cur_tile_p->y *= cur_tile_p->w;
cur_tile_p->z *= cur_tile_p->w;
}
}
/*------------------------------------------------------------
Filter and blur exposure values
Loop for the range of 'outDim'.
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::applyBlurFilter_CPU(
float4 *in_tile_p, float4 *out_tile_p, TDimensionI &enlargedDim,
float *filter_p, TDimensionI &filterDim, int marginLeft, int marginBottom,
int marginRight, int marginTop, TDimensionI &outDim) {
for (int i = 0; i < outDim.lx * outDim.ly; i++) {
/* in_tile_dev and out_tile_dev contain data with dimensions lx * ly.
* So, convert i to coordinates for output. */
int2 outPos = {i % outDim.lx + marginRight, i / outDim.lx + marginTop};
int outIndex = outPos.y * enlargedDim.lx + outPos.x;
/* put the result in out_tile_dev [outIndex] */
/* Prepare a container to accumulate values - */
float4 value = {0.0f, 0.0f, 0.0f, 0.0f};
/* Loop by filter size.
* Note that the filter is used to 'collect' pixels at sample points
* so flip the filter vertically and horizontally and sample it */
int filterIndex = 0;
for (int fily = -marginBottom; fily < filterDim.ly - marginBottom; fily++) {
/* Sample coordinates and index of the end of this scan line */
int2 samplePos = {outPos.x + marginLeft, outPos.y - fily};
int sampleIndex = samplePos.y * enlargedDim.lx + samplePos.x;
for (int filx = -marginLeft; filx < filterDim.lx - marginLeft;
filx++, filterIndex++, sampleIndex--) {
/* If the filter value is 0 or the sample pixel is transparent, continue
*/
if (filter_p[filterIndex] == 0.0f || in_tile_p[sampleIndex].w == 0.0f)
continue;
/* multiply the sample point value by the filter value and integrate */
value.x += in_tile_p[sampleIndex].x * filter_p[filterIndex];
value.y += in_tile_p[sampleIndex].y * filter_p[filterIndex];
value.z += in_tile_p[sampleIndex].z * filter_p[filterIndex];
value.w += in_tile_p[sampleIndex].w * filter_p[filterIndex];
}
}
out_tile_p[outIndex].x = value.x;
out_tile_p[outIndex].y = value.y;
out_tile_p[outIndex].z = value.z;
out_tile_p[outIndex].w = value.w;
}
}
/*------------------------------------------------------------
Unpremultiply the exposure value
-> convert back to RGB value (0 to 1)
-> premultiply
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::convertExposureToRGB_CPU(
float4 *out_tile_p, TDimensionI &dim, const ExposureConverter &conv) {
float4 *cur_tile_p = out_tile_p;
for (int i = 0; i < dim.lx * dim.ly; i++, cur_tile_p++) {
/* if alpha is 0 return */
if (cur_tile_p->w == 0.0f) {
cur_tile_p->x = 0.0f;
cur_tile_p->y = 0.0f;
cur_tile_p->z = 0.0f;
continue;
}
// unpremultiply
cur_tile_p->x /= cur_tile_p->w;
cur_tile_p->y /= cur_tile_p->w;
cur_tile_p->z /= cur_tile_p->w;
/* Convert Exposure to RGB value */
cur_tile_p->x = conv.exposureToValue(cur_tile_p->x);
cur_tile_p->y = conv.exposureToValue(cur_tile_p->y);
cur_tile_p->z = conv.exposureToValue(cur_tile_p->z);
// multiply
cur_tile_p->x *= cur_tile_p->w;
cur_tile_p->y *= cur_tile_p->w;
cur_tile_p->z *= cur_tile_p->w;
}
}
/*------------------------------------------------------------
If there is a background, and the foreground does not move, simply over
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::composeWithNoMotion(
TTile &tile, double frame, const TRenderSettings &settings) {
assert(m_background.isConnected());
m_background->compute(tile, frame, settings);
TTile fore_tile;
m_input->allocateAndCompute(fore_tile, tile.m_pos,
tile.getRaster()->getSize(), tile.getRaster(),
frame, settings);
TRasterP up(fore_tile.getRaster()), down(tile.getRaster());
TRop::over(down, up);
}
/*------------------------------------------------------------
Convert background to exposure value and over it
------------------------------------------------------------*/
void Iwa_MotionBlurCompFx::composeBackgroundExposure_CPU(
float4 *out_tile_p, TDimensionI &enlargedDimIn, int marginRight,
int marginTop, TTile &back_tile, TDimensionI &dimOut,
const ExposureConverter &conv) {
/* Memory allocation of host */
TRasterGR8P background_host_ras(sizeof(float4) * dimOut.lx, dimOut.ly);
background_host_ras->lock();
float4 *background_host = (float4 *)background_host_ras->getRawData();
bool bgIsPremultiplied;
/* normalize the background image to 0 - 1 and read it into the host memory
*/
TRaster32P backRas32 = (TRaster32P)back_tile.getRaster();
TRaster64P backRas64 = (TRaster64P)back_tile.getRaster();
TRasterFP backRasF = (TRasterFP)back_tile.getRaster();
if (backRas32)
bgIsPremultiplied = setSourceRaster<TRaster32P, TPixel32>(
backRas32, background_host, dimOut);
else if (backRas64)
bgIsPremultiplied = setSourceRaster<TRaster64P, TPixel64>(
backRas64, background_host, dimOut);
else if (backRasF)
bgIsPremultiplied =
setSourceRaster<TRasterFP, TPixelF>(backRasF, background_host, dimOut);
float4 *bg_p = background_host;
float4 *out_p;
for (int j = 0; j < dimOut.ly; j++) {
out_p = out_tile_p + ((marginTop + j) * enlargedDimIn.lx + marginRight);
for (int i = 0; i < dimOut.lx; i++, bg_p++, out_p++) {
/* if upper layer is completely opaque continue */
if ((*out_p).w >= 1.0f) continue;
/* even if the lower layer is completely transparent continue */
if ((*bg_p).w < 0.0001f) continue;
float3 bgExposure = {(*bg_p).x, (*bg_p).y, (*bg_p).z};
/* Unpremultiply on sources that are premultiplied, such as regular Level.
* It is not done for 'digital overlay' (image with alpha mask added by
* using Photoshop, as known as 'DigiBook' in Japanese animation industry)
* etc.
*/
if (bgIsPremultiplied) {
// Unpremultiply
bgExposure.x /= (*bg_p).w;
bgExposure.y /= (*bg_p).w;
bgExposure.z /= (*bg_p).w;
}
/* Set RGB value to Exposure*/
bgExposure.x = conv.valueToExposure(bgExposure.x);
bgExposure.y = conv.valueToExposure(bgExposure.y);
bgExposure.z = conv.valueToExposure(bgExposure.z);
// multiply
bgExposure.x *= (*bg_p).w;
bgExposure.y *= (*bg_p).w;
bgExposure.z *= (*bg_p).w;
/* Over composite with front layers */
(*out_p).x = (*out_p).x + bgExposure.x * (1.0f - (*out_p).w);
(*out_p).y = (*out_p).y + bgExposure.y * (1.0f - (*out_p).w);
(*out_p).z = (*out_p).z + bgExposure.z * (1.0f - (*out_p).w);
/* Alpha value also over-composited */
(*out_p).w = (*out_p).w + (*bg_p).w * (1.0f - (*out_p).w);
}
}
background_host_ras->unlock();
}
//------------------------------------------------------------
Iwa_MotionBlurCompFx::Iwa_MotionBlurCompFx()
: m_hardness(0.3)
, m_gamma(2.2)
, m_gammaAdjust(0.)
/* Parameters for blurring left and right */
, m_startValue(1.0)
, m_startCurve(1.0)
, m_endValue(1.0)
, m_endCurve(1.0)
, m_zanzoMode(false)
, m_premultiType(new TIntEnumParam(AUTO, "Auto")) {
/* Bind common parameters */
addInputPort("Source", m_input);
addInputPort("Back", m_background);
bindParam(this, "hardness", m_hardness);
bindParam(this, "gamma", m_gamma);
bindParam(this, "gammaAdjust", m_gammaAdjust);
bindParam(this, "shutterStart", m_shutterStart);
bindParam(this, "shutterEnd", m_shutterEnd);
bindParam(this, "traceResolution", m_traceResolution);
bindParam(this, "motionObjectType", m_motionObjectType);
bindParam(this, "motionObjectIndex", m_motionObjectIndex);
bindParam(this, "startValue", m_startValue);
bindParam(this, "startCurve", m_startCurve);
bindParam(this, "endValue", m_endValue);
bindParam(this, "endCurve", m_endCurve);
bindParam(this, "zanzoMode", m_zanzoMode);
bindParam(this, "premultiType", m_premultiType);
/* Common parameter range setting */
m_hardness->setValueRange(0.05, 10.0);
m_gamma->setValueRange(1.0, 10.0);
m_gammaAdjust->setValueRange(-5., 5.);
m_startValue->setValueRange(0.0, 1.0);
m_startCurve->setValueRange(0.1, 10.0);
m_endValue->setValueRange(0.0, 1.0);
m_endCurve->setValueRange(0.1, 10.0);
m_premultiType->addItem(SOURCE_IS_PREMULTIPLIED, "Source is premultiplied");
m_premultiType->addItem(SOURCE_IS_NOT_PREMUTIPLIED,
"Source is NOT premultiplied");
getAttributes()->setIsSpeedAware(true);
enableComputeInFloat(true);
// Version 1: Exposure is computed by using Hardness
// E = std::pow(10.0, (value - 0.5) / hardness)
// Version 2: Exposure is computed by using Gamma, for easier combination with
// the linear color space
// E = std::pow(value, gamma)
// Version 3: Gamma is computed by rs.m_colorSpaceGamma + gammaAdjust
// this must be called after binding the parameters (see onFxVersionSet())
setFxVersion(3);
}
//--------------------------------------------
void Iwa_MotionBlurCompFx::onFxVersionSet() {
if (getFxVersion() == 1) { // use hardness
getParams()->getParamVar("hardness")->setIsHidden(false);
getParams()->getParamVar("gamma")->setIsHidden(true);
getParams()->getParamVar("gammaAdjust")->setIsHidden(true);
return;
}
getParams()->getParamVar("hardness")->setIsHidden(true);
bool useGamma = getFxVersion() == 2;
if (useGamma) {
// Automatically update version
if (m_gamma->getKeyframeCount() == 0 &&
areAlmostEqual(m_gamma->getDefaultValue(), 2.2)) {
useGamma = false;
setFxVersion(3);
}
}
getParams()->getParamVar("gamma")->setIsHidden(!useGamma);
getParams()->getParamVar("gammaAdjust")->setIsHidden(useGamma);
}
//------------------------------------------------------------
void Iwa_MotionBlurCompFx::doCompute(TTile &tile, double frame,
const TRenderSettings &settings) {
/* Do not process if not connected */
if (!m_input.isConnected() && !m_background.isConnected()) {
tile.getRaster()->clear();
return;
}
/* For BG only connection */
if (!m_input.isConnected()) {
m_background->compute(tile, frame, settings);
return;
}
/* Get parameters */
QList<TPointD> points = getAttributes()->getMotionPoints();
double gamma;
// The hardness value had been used inversely with the bokeh fxs.
// Now the convertion functions are shared with the bokeh fxs,
// so we need to change the hardness to reciprocal in order to obtain
// the same result as previous versions.
if (getFxVersion() == 1)
gamma = 1. / m_hardness->getValue(frame);
else { // gamma
if (getFxVersion() == 2)
gamma = m_gamma->getValue(frame);
else
gamma = std::max(
1., settings.m_colorSpaceGamma + m_gammaAdjust->getValue(frame));
if (tile.getRaster()->isLinear()) gamma /= settings.m_colorSpaceGamma;
}
double shutterStart = m_shutterStart->getValue(frame);
double shutterEnd = m_shutterEnd->getValue(frame);
int traceResolution = m_traceResolution->getValue();
float startValue = (float)m_startValue->getValue(frame);
float startCurve = (float)m_startCurve->getValue(frame);
float endValue = (float)m_endValue->getValue(frame);
float endCurve = (float)m_endCurve->getValue(frame);
/* Do not process if there are no more than two trajectory data */
if (points.size() < 2) {
if (!m_background.isConnected()) m_input->compute(tile, frame, settings);
/* If there is a background and the foreground does not move, simply over */
else
composeWithNoMotion(tile, frame, settings);
return;
}
/* Get display area */
TRectD bBox =
TRectD(tile.m_pos /* Render position on Pixel unit */
,
TDimensionD(/* Size of Render image (Pixel unit) */
tile.getRaster()->getLx(), tile.getRaster()->getLy()));
/* Get upper, lower, left and right margin */
double minX = 0.0;
double maxX = 0.0;
double minY = 0.0;
double maxY = 0.0;
for (int p = 0; p < points.size(); p++) {
if (points.at(p).x > maxX) maxX = points.at(p).x;
if (points.at(p).x < minX) minX = points.at(p).x;
if (points.at(p).y > maxY) maxY = points.at(p).y;
if (points.at(p).y < minY) minY = points.at(p).y;
}
int marginLeft = (int)ceil(std::abs(minX));
int marginRight = (int)ceil(std::abs(maxX));
int marginTop = (int)ceil(std::abs(maxY));
int marginBottom = (int)ceil(std::abs(minY));
/* Return the input tile as-is if there is not movement
* (= filter margins are all 0). */
if (marginLeft == 0 && marginRight == 0 && marginTop == 0 &&
marginBottom == 0) {
if (!m_background.isConnected()) m_input->compute(tile, frame, settings);
/* If there is a background, and the foreground does not move, simply over
*/
else
composeWithNoMotion(tile, frame, settings);
return;
}
/* resize the bbox with the upper/lower/left/right inverted margins.
*/
TRectD enlargedBBox(bBox.x0 - (double)marginRight,
bBox.y0 - (double)marginTop, bBox.x1 + (double)marginLeft,
bBox.y1 + (double)marginBottom);
// std::cout<<"Margin Left:"<<marginLeft<<" Right:"<<marginRight<<
// " Bottom:"<<marginBottom<<" Top:"<<marginTop<<std::endl;
TDimensionI enlargedDimIn(/* Rounded to the nearest Pixel */
(int)(enlargedBBox.getLx() + 0.5),
(int)(enlargedBBox.getLy() + 0.5));
TTile enlarge_tile;
m_input->allocateAndCompute(enlarge_tile, enlargedBBox.getP00(),
enlargedDimIn, tile.getRaster(), frame, settings);
/* If background is required */
TTile back_Tile;
if (m_background.isConnected()) {
m_background->allocateAndCompute(back_Tile, tile.m_pos,
tile.getRaster()->getSize(),
tile.getRaster(), frame, settings);
}
//-------------------------------------------------------
/* Compute range */
TDimensionI dimOut(tile.getRaster()->getLx(), tile.getRaster()->getLy());
TDimensionI filterDim(marginLeft + marginRight + 1,
marginTop + marginBottom + 1);
/* Release of pointsTable is done within each doCompute */
int pointAmount = points.size();
float4 *pointsTable = new float4[pointAmount];
float dt = (float)(shutterStart + shutterEnd) / (float)traceResolution;
for (int p = 0; p < pointAmount; p++) {
pointsTable[p].x = (float)points.at(p).x;
pointsTable[p].y = (float)points.at(p).y;
/* z stores the distance of p -> p + 1 vector */
if (p < pointAmount - 1) {
float2 vec = {(float)(points.at(p + 1).x - points.at(p).x),
(float)(points.at(p + 1).y - points.at(p).y)};
pointsTable[p].z = sqrtf(vec.x * vec.x + vec.y * vec.y);
}
/* w stores shutter time offset */
pointsTable[p].w = -(float)shutterStart + (float)p * dt;
}
doCompute_CPU(tile, frame, settings, pointsTable, pointAmount, gamma,
shutterStart, shutterEnd, traceResolution, startValue,
startCurve, endValue, endCurve, marginLeft, marginRight,
marginTop, marginBottom, enlargedDimIn, enlarge_tile, dimOut,
filterDim, back_Tile);
}
//------------------------------------------------------------
void Iwa_MotionBlurCompFx::doCompute_CPU(
TTile &tile, double frame, const TRenderSettings &settings,
float4 *pointsTable, int pointAmount, double gamma, double shutterStart,
double shutterEnd, int traceResolution, float startValue, float startCurve,
float endValue, float endCurve, int marginLeft, int marginRight,
int marginTop, int marginBottom, TDimensionI &enlargedDimIn,
TTile &enlarge_tile, TDimensionI &dimOut, TDimensionI &filterDim,
TTile &back_tile) {
/* Processing memory */
float4 *in_tile_p; /* With margin */
float4 *out_tile_p; /* With margin */
/* Filter */
float *filter_p;
/* Memory allocation */
TRasterGR8P in_tile_ras(sizeof(float4) * enlargedDimIn.lx, enlargedDimIn.ly);
in_tile_ras->lock();
in_tile_p = (float4 *)in_tile_ras->getRawData();
TRasterGR8P out_tile_ras(sizeof(float4) * enlargedDimIn.lx, enlargedDimIn.ly);
out_tile_ras->lock();
out_tile_p = (float4 *)out_tile_ras->getRawData();
TRasterGR8P filter_ras(sizeof(float) * filterDim.lx, filterDim.ly);
filter_ras->lock();
filter_p = (float *)filter_ras->getRawData();
bool sourceIsPremultiplied;
/* normalize the source image to 0 - 1 and read it into memory */
TRaster32P ras32 = (TRaster32P)enlarge_tile.getRaster();
TRaster64P ras64 = (TRaster64P)enlarge_tile.getRaster();
TRasterFP rasF = (TRasterFP)enlarge_tile.getRaster();
if (ras32)
sourceIsPremultiplied = setSourceRaster<TRaster32P, TPixel32>(
ras32, in_tile_p, enlargedDimIn,
(PremultiTypes)m_premultiType->getValue());
else if (ras64)
sourceIsPremultiplied = setSourceRaster<TRaster64P, TPixel64>(
ras64, in_tile_p, enlargedDimIn,
(PremultiTypes)m_premultiType->getValue());
else if (rasF)
sourceIsPremultiplied = setSourceRaster<TRasterFP, TPixelF>(
rasF, in_tile_p, enlargedDimIn,
(PremultiTypes)m_premultiType->getValue());
/* When afterimage mode is off */
if (!m_zanzoMode->getValue()) {
/* Create and normalize filters */
makeMotionBlurFilter_CPU(filter_p, filterDim, marginLeft, marginBottom,
pointsTable, pointAmount, startValue, startCurve,
endValue, endCurve);
}
/* When afterimage mode is ON */
else {
/* Create / normalize the afterimage filter */
makeZanzoFilter_CPU(filter_p, filterDim, marginLeft, marginBottom,
pointsTable, pointAmount, startValue, startCurve,
endValue, endCurve);
}
delete[] pointsTable;
/* Unpremultiply RGB value (0 to 1)
* -> convert it to exposure value
* -> premultiply again
*/
if (getFxVersion() == 1)
convertRGBtoExposure_CPU(
in_tile_p, enlargedDimIn,
HardnessBasedConverter(gamma, settings.m_colorSpaceGamma,
enlarge_tile.getRaster()->isLinear()),
sourceIsPremultiplied);
else
convertRGBtoExposure_CPU(in_tile_p, enlargedDimIn,
GammaBasedConverter(gamma), sourceIsPremultiplied);
/* Filter and blur exposure value */
applyBlurFilter_CPU(in_tile_p, out_tile_p, enlargedDimIn, filter_p, filterDim,
marginLeft, marginBottom, marginRight, marginTop, dimOut);
/* Memory release */
in_tile_ras->unlock();
filter_ras->unlock();
/* If there is a background, do Exposure multiplication */
if (m_background.isConnected()) {
if (getFxVersion() == 1)
composeBackgroundExposure_CPU(
out_tile_p, enlargedDimIn, marginRight, marginTop, back_tile, dimOut,
HardnessBasedConverter(gamma, settings.m_colorSpaceGamma,
tile.getRaster()->isLinear()));
else
composeBackgroundExposure_CPU(out_tile_p, enlargedDimIn, marginRight,
marginTop, back_tile, dimOut,
GammaBasedConverter(gamma));
}
/* Unpremultiply the exposure value
* -> convert back to RGB value (0 to 1)
* -> premultiply */
if (getFxVersion() == 1)
convertExposureToRGB_CPU(
out_tile_p, enlargedDimIn,
HardnessBasedConverter(gamma, settings.m_colorSpaceGamma,
tile.getRaster()->isLinear()));
else
convertExposureToRGB_CPU(out_tile_p, enlargedDimIn,
GammaBasedConverter(gamma));
/* Clear raster */
tile.getRaster()->clear();
TRaster32P outRas32 = (TRaster32P)tile.getRaster();
TRaster64P outRas64 = (TRaster64P)tile.getRaster();
TRasterFP outRasF = (TRasterFP)tile.getRaster();
int2 margin = {marginRight, marginTop};
if (outRas32)
setOutputRaster<TRaster32P, TPixel32>(out_tile_p, outRas32, enlargedDimIn,
margin);
else if (outRas64)
setOutputRaster<TRaster64P, TPixel64>(out_tile_p, outRas64, enlargedDimIn,
margin);
else if (outRasF)
setOutputRaster<TRasterFP, TPixelF>(out_tile_p, outRasF, enlargedDimIn,
margin);
/* Memory release */
out_tile_ras->unlock();
}
//------------------------------------------------------------
bool Iwa_MotionBlurCompFx::doGetBBox(double frame, TRectD &bBox,
const TRenderSettings &info) {
if (!m_input.isConnected() && !m_background.isConnected()) {
bBox = TRectD();
return false;
}
/* Rough implementation - return infinite size if the background is connected
*/
if (m_background.isConnected()) {
bool _ret = m_background->doGetBBox(frame, bBox, info);
bBox = TConsts::infiniteRectD;
return _ret;
}
bool ret = m_input->doGetBBox(frame, bBox, info);
if (bBox == TConsts::infiniteRectD) return true;
QList<TPointD> points = getAttributes()->getMotionPoints();
/* Compute the margin from the bounding box of the moved trajectory */
/* Obtain the maximum absolute value of the coordinates of each trajectory
* point */
/* Get upper, lower, left and right margins */
double minX = 0.0;
double maxX = 0.0;
double minY = 0.0;
double maxY = 0.0;
for (int p = 0; p < points.size(); p++) {
if (points.at(p).x > maxX) maxX = points.at(p).x;
if (points.at(p).x < minX) minX = points.at(p).x;
if (points.at(p).y > maxY) maxY = points.at(p).y;
if (points.at(p).y < minY) minY = points.at(p).y;
}
int marginLeft = (int)ceil(std::abs(minX));
int marginRight = (int)ceil(std::abs(maxX));
int marginTop = (int)ceil(std::abs(maxY));
int marginBottom = (int)ceil(std::abs(minY));
TRectD enlargedBBox(
bBox.x0 - (double)marginLeft, bBox.y0 - (double)marginBottom,
bBox.x1 + (double)marginRight, bBox.y1 + (double)marginTop);
bBox = enlargedBBox;
return ret;
}
//------------------------------------------------------------
bool Iwa_MotionBlurCompFx::canHandle(const TRenderSettings &info,
double frame) {
return true;
}
/*------------------------------------------------------------
Since there is a possibility that the reference object is moving,
Change the alias every frame
------------------------------------------------------------*/
std::string Iwa_MotionBlurCompFx::getAlias(double frame,
const TRenderSettings &info) const {
std::string alias = getFxType();
alias += "[";
// alias of the effects related to the input ports separated by commas
// a port that is not connected to an alias blank (empty string)
int i;
for (i = 0; i < getInputPortCount(); i++) {
TFxPort *port = getInputPort(i);
if (port->isConnected()) {
TRasterFxP ifx = port->getFx();
assert(ifx);
alias += ifx->getAlias(frame, info);
}
alias += ",";
}
std::string paramalias("");
for (i = 0; i < getParams()->getParamCount(); i++) {
TParam *param = getParams()->getParam(i);
paramalias += param->getName() + "=" + param->getValueAlias(frame, 3);
}
unsigned long id = getIdentifier();
return alias + std::to_string(frame) + "," + std::to_string(id) + paramalias +
"]";
}
//------------------------------------------------------------
bool Iwa_MotionBlurCompFx::toBeComputedInLinearColorSpace(
bool settingsIsLinear, bool tileIsLinear) const {
return settingsIsLinear;
}
FX_PLUGIN_IDENTIFIER(Iwa_MotionBlurCompFx, "iwa_MotionBlurCompFx")