SUBROUTINE CGETRSF( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* CGETRS solves a system of linear equations
* A * X = B, A**T * X = B, or A**H * X = B
* with a general N-by-N matrix A using the LU factorization computed
* by CGETRF.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations:
* = 'N': A * X = B (No transpose)
* = 'T': A**T * X = B (Transpose)
* = 'C': A**H * X = B (Conjugate transpose)
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The factors L and U from the factorization A = P*L*U
* as computed by CGETRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLASWP, CTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' ) .OR. LSAME(TRANS, 'R')
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGETRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
IF( NOTRAN ) THEN
*
* Solve A * X = B.
*
* Apply row interchanges to the right hand sides.
*
CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
*
* Solve L*X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS,
$ ONE, A, LDA, B, LDB )
*
* Solve U*X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N,
$ NRHS, ONE, A, LDA, B, LDB )
ELSE
*
* Solve A**T * X = B or A**H * X = B.
*
* Solve U'*X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
$ A, LDA, B, LDB )
*
* Solve L'*X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS, ONE, A,
$ LDA, B, LDB )
*
* Apply row interchanges to the solution vectors.
*
CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
END IF
*
RETURN
*
* End of CGETRS
*
END