Blob Blame Raw
      SUBROUTINE CHERKF ( UPLO, TRANS, N, K, ALPHA, A, LDA,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, TRANS
      INTEGER            N, K, LDA, LDC
      REAL               ALPHA, BETA
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  CHERK  performs one of the hermitian rank k operations
*
*     C := alpha*A*conjg( A' ) + beta*C,
*
*  or
*
*     C := alpha*conjg( A' )*A + beta*C,
*
*  where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
*  matrix and  A  is an  n by k  matrix in the  first case and a  k by n
*  matrix in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*conjg( A' ) + beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*conjg( A' )*A + beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns   of  the   matrix   A,   and  on   entry   with
*           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
*           matrix A.  K must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - COMPLEX          array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  hermitian matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  hermitian matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*           Note that the imaginary parts of the diagonal elements need
*           not be set,  they are assumed to be zero,  and on exit they
*           are set to zero.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
*     Ed Anderson, Cray Research Inc.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, CONJG, MAX, REAL
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, L, NROWA
      REAL               RTEMP
      COMPLEX            TEMP
*     .. Parameters ..
      REAL               ONE ,         ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         NROWA = N
      ELSE
         NROWA = K
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF(      ( .NOT.UPPER               ).AND.
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
         INFO = 2
      ELSE IF( N  .LT.0               )THEN
         INFO = 3
      ELSE IF( K  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
         INFO = 10
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'CHERK ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( UPPER )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 20, J = 1, N
                  DO 10, I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40, J = 1, N
                  DO 30, I = 1, J - 1
                     C( I, J ) = BETA*C( I, J )
   30             CONTINUE
                  C( J, J ) = BETA*REAL( C( J, J ) )
   40          CONTINUE
            END IF
         ELSE
            IF( BETA.EQ.ZERO )THEN
               DO 60, J = 1, N
                  DO 50, I = J, N
                     C( I, J ) = ZERO
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 80, J = 1, N
                  C( J, J ) = BETA*REAL( C( J, J ) )
                  DO 70, I = J + 1, N
                     C( I, J ) = BETA*C( I, J )
   70             CONTINUE
   80          CONTINUE
            END IF
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  C := alpha*A*conjg( A' ) + beta*C.
*
         IF( UPPER )THEN
            DO 130, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 90, I = 1, J
                     C( I, J ) = ZERO
   90             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 100, I = 1, J - 1
                     C( I, J ) = BETA*C( I, J )
  100             CONTINUE
                  C( J, J ) = BETA*REAL( C( J, J ) )
               ELSE
                  C( J, J ) = REAL( C( J, J ) )
               END IF
               DO 120, L = 1, K
                  IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
                     TEMP = ALPHA*CONJG( A( J, L ) )
                     DO 110, I = 1, J - 1
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  110                CONTINUE
                     C( J, J ) = REAL( C( J, J )      ) +
     $                           REAL( TEMP*A( I, L ) )
                  END IF
  120          CONTINUE
  130       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 140, I = J, N
                     C( I, J ) = ZERO
  140             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  C( J, J ) = BETA*REAL( C( J, J ) )
                  DO 150, I = J + 1, N
                     C( I, J ) = BETA*C( I, J )
  150             CONTINUE
               ELSE
                  C( J, J ) = REAL( C( J, J ) )
               END IF
               DO 170, L = 1, K
                  IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
                     TEMP      = ALPHA*CONJG( A( J, L ) )
                     C( J, J ) = REAL( C( J, J )      )   +
     $                           REAL( TEMP*A( J, L ) )
                     DO 160, I = J + 1, N
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  160                CONTINUE
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*conjg( A' )*A + beta*C.
*
         IF( UPPER )THEN
            DO 220, J = 1, N
               DO 200, I = 1, J - 1
                  TEMP = ZERO
                  DO 190, L = 1, K
                     TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
  190             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  200          CONTINUE
               RTEMP = ZERO
               DO 210, L = 1, K
                  RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
  210          CONTINUE
               IF( BETA.EQ.ZERO )THEN
                  C( J, J ) = ALPHA*RTEMP
               ELSE
                  C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
               END IF
  220       CONTINUE
         ELSE
            DO 260, J = 1, N
               RTEMP = ZERO
               DO 230, L = 1, K
                  RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
  230          CONTINUE
               IF( BETA.EQ.ZERO )THEN
                  C( J, J ) = ALPHA*RTEMP
               ELSE
                  C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
               END IF
               DO 250, I = J + 1, N
                  TEMP = ZERO
                  DO 240, L = 1, K
                     TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
  240             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  250          CONTINUE
  260       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CHERK .
*
      END