/*! @file cgstrs.c
* \brief Solves a system using LU factorization
*
* <pre>
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
* </pre>
*/
#include "slu_cdefs.h"
/*
* Function prototypes
*/
void cusolve(int, int, complex*, complex*);
void clsolve(int, int, complex*, complex*);
void cmatvec(int, int, int, complex*, complex*, complex*);
/*! \brief
*
* <pre>
* Purpose
* =======
*
* CGSTRS solves a system of linear equations A*X=B or A'*X=B
* with A sparse and B dense, using the LU factorization computed by
* CGSTRF.
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* trans (input) trans_t
* Specifies the form of the system of equations:
* = NOTRANS: A * X = B (No transpose)
* = TRANS: A'* X = B (Transpose)
* = CONJ: A**H * X = B (Conjugate transpose)
*
* L (input) SuperMatrix*
* The factor L from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use compressed row subscripts storage for supernodes,
* i.e., L has types: Stype = SLU_SC, Dtype = SLU_C, Mtype = SLU_TRLU.
*
* U (input) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use column-wise storage scheme, i.e., U has types:
* Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_TRU.
*
* perm_c (input) int*, dimension (L->ncol)
* Column permutation vector, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
*
* perm_r (input) int*, dimension (L->nrow)
* Row permutation vector, which defines the permutation matrix Pr;
* perm_r[i] = j means row i of A is in position j in Pr*A.
*
* B (input/output) SuperMatrix*
* B has types: Stype = SLU_DN, Dtype = SLU_C, Mtype = SLU_GE.
* On entry, the right hand side matrix.
* On exit, the solution matrix if info = 0;
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* < 0: if info = -i, the i-th argument had an illegal value
* </pre>
*/
void
cgstrs (trans_t trans, SuperMatrix *L, SuperMatrix *U,
int *perm_c, int *perm_r, SuperMatrix *B,
SuperLUStat_t *stat, int *info)
{
#ifdef _CRAY
_fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif
int incx = 1, incy = 1;
#ifdef USE_VENDOR_BLAS
complex alpha = {1.0, 0.0}, beta = {1.0, 0.0};
complex *work_col;
#endif
complex temp_comp;
DNformat *Bstore;
complex *Bmat;
SCformat *Lstore;
NCformat *Ustore;
complex *Lval, *Uval;
int fsupc, nrow, nsupr, nsupc, luptr, istart, irow;
int i, j, k, iptr, jcol, n, ldb, nrhs;
complex *work, *rhs_work, *soln;
flops_t solve_ops;
void cprint_soln();
/* Test input parameters ... */
*info = 0;
Bstore = B->Store;
ldb = Bstore->lda;
nrhs = B->ncol;
if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
else if ( L->nrow != L->ncol || L->nrow < 0 ||
L->Stype != SLU_SC || L->Dtype != SLU_C || L->Mtype != SLU_TRLU )
*info = -2;
else if ( U->nrow != U->ncol || U->nrow < 0 ||
U->Stype != SLU_NC || U->Dtype != SLU_C || U->Mtype != SLU_TRU )
*info = -3;
else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )
*info = -6;
if ( *info ) {
i = -(*info);
xerbla_("cgstrs", &i);
return;
}
n = L->nrow;
work = complexCalloc(n * nrhs);
if ( !work ) ABORT("Malloc fails for local work[].");
soln = complexMalloc(n);
if ( !soln ) ABORT("Malloc fails for local soln[].");
Bmat = Bstore->nzval;
Lstore = L->Store;
Lval = Lstore->nzval;
Ustore = U->Store;
Uval = Ustore->nzval;
solve_ops = 0;
if ( trans == NOTRANS ) {
/* Permute right hand sides to form Pr*B */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
/* Forward solve PLy=Pb. */
for (k = 0; k <= Lstore->nsuper; k++) {
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
nsupc = L_FST_SUPC(k+1) - fsupc;
nrow = nsupr - nsupc;
solve_ops += 4 * nsupc * (nsupc - 1) * nrhs;
solve_ops += 8 * nrow * nsupc * nrhs;
if ( nsupc == 1 ) {
for (j = 0; j < nrhs; j++) {
rhs_work = &Bmat[j*ldb];
luptr = L_NZ_START(fsupc);
for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){
irow = L_SUB(iptr);
++luptr;
cc_mult(&temp_comp, &rhs_work[fsupc], &Lval[luptr]);
c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);
}
}
} else {
luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
ftcs1 = _cptofcd("L", strlen("L"));
ftcs2 = _cptofcd("N", strlen("N"));
ftcs3 = _cptofcd("U", strlen("U"));
CTRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
CGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha,
&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
&beta, &work[0], &n );
#else
ctrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
cgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha,
&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
&beta, &work[0], &n );
#endif
for (j = 0; j < nrhs; j++) {
rhs_work = &Bmat[j*ldb];
work_col = &work[j*n];
iptr = istart + nsupc;
for (i = 0; i < nrow; i++) {
irow = L_SUB(iptr);
c_sub(&rhs_work[irow], &rhs_work[irow], &work_col[i]);
work_col[i].r = 0.0;
work_col[i].i = 0.0;
iptr++;
}
}
#else
for (j = 0; j < nrhs; j++) {
rhs_work = &Bmat[j*ldb];
clsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
cmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
&rhs_work[fsupc], &work[0] );
iptr = istart + nsupc;
for (i = 0; i < nrow; i++) {
irow = L_SUB(iptr);
c_sub(&rhs_work[irow], &rhs_work[irow], &work[i]);
work[i].r = 0.;
work[i].i = 0.;
iptr++;
}
}
#endif
} /* else ... */
} /* for L-solve */
#ifdef DEBUG
printf("After L-solve: y=\n");
cprint_soln(n, nrhs, Bmat);
#endif
/*
* Back solve Ux=y.
*/
for (k = Lstore->nsuper; k >= 0; k--) {
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
nsupc = L_FST_SUPC(k+1) - fsupc;
luptr = L_NZ_START(fsupc);
solve_ops += 4 * nsupc * (nsupc + 1) * nrhs;
if ( nsupc == 1 ) {
rhs_work = &Bmat[0];
for (j = 0; j < nrhs; j++) {
c_div(&rhs_work[fsupc], &rhs_work[fsupc], &Lval[luptr]);
rhs_work += ldb;
}
} else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
ftcs1 = _cptofcd("L", strlen("L"));
ftcs2 = _cptofcd("U", strlen("U"));
ftcs3 = _cptofcd("N", strlen("N"));
CTRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
ctrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else
for (j = 0; j < nrhs; j++)
cusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
#endif
}
for (j = 0; j < nrhs; ++j) {
rhs_work = &Bmat[j*ldb];
for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
solve_ops += 8*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
irow = U_SUB(i);
cc_mult(&temp_comp, &rhs_work[jcol], &Uval[i]);
c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);
}
}
}
} /* for U-solve */
#ifdef DEBUG
printf("After U-solve: x=\n");
cprint_soln(n, nrhs, Bmat);
#endif
/* Compute the final solution X := Pc*X. */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
stat->ops[SOLVE] = solve_ops;
} else { /* Solve A'*X=B or CONJ(A)*X=B */
/* Permute right hand sides to form Pc'*B. */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
stat->ops[SOLVE] = 0;
if (trans == TRANS) {
for (k = 0; k < nrhs; ++k) {
/* Multiply by inv(U'). */
sp_ctrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
/* Multiply by inv(L'). */
sp_ctrsv("L", "T", "U", L, U, &Bmat[k*ldb], stat, info);
}
} else { /* trans == CONJ */
for (k = 0; k < nrhs; ++k) {
/* Multiply by conj(inv(U')). */
sp_ctrsv("U", "C", "N", L, U, &Bmat[k*ldb], stat, info);
/* Multiply by conj(inv(L')). */
sp_ctrsv("L", "C", "U", L, U, &Bmat[k*ldb], stat, info);
}
}
/* Compute the final solution X := Pr'*X (=inv(Pr)*X) */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
}
SUPERLU_FREE(work);
SUPERLU_FREE(soln);
}
/*
* Diagnostic print of the solution vector
*/
void
cprint_soln(int n, int nrhs, complex *soln)
{
int i;
for (i = 0; i < n; i++)
printf("\t%d: %.4f\n", i, soln[i]);
}