/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#ifndef CACHE_LINE_SIZE
#define CACHE_LINE_SIZE 8
#endif
#ifndef DIVIDE_RATE
#define DIVIDE_RATE 2
#endif
#ifndef SWITCH_RATIO
#define SWITCH_RATIO 2
#endif
#ifndef SYRK_LOCAL
#if !defined(LOWER) && !defined(TRANS)
#define SYRK_LOCAL SYRK_UN
#elif !defined(LOWER) && defined(TRANS)
#define SYRK_LOCAL SYRK_UT
#elif defined(LOWER) && !defined(TRANS)
#define SYRK_LOCAL SYRK_LN
#else
#define SYRK_LOCAL SYRK_LT
#endif
#endif
typedef struct {
volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
} job_t;
#ifndef KERNEL_OPERATION
#ifndef COMPLEX
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
#else
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
#endif
#endif
#ifndef ICOPY_OPERATION
#ifndef TRANS
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
#else
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
#endif
#endif
#ifndef OCOPY_OPERATION
#ifdef TRANS
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
#else
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
#endif
#endif
#ifndef A
#define A args -> a
#endif
#ifndef LDA
#define LDA args -> lda
#endif
#ifndef C
#define C args -> c
#endif
#ifndef LDC
#define LDC args -> ldc
#endif
#ifndef M
#define M args -> m
#endif
#ifndef N
#define N args -> n
#endif
#ifndef K
#define K args -> k
#endif
#undef TIMING
#ifdef TIMING
#define START_RPCC() rpcc_counter = rpcc()
#define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
#else
#define START_RPCC()
#define STOP_RPCC(COUNTER)
#endif
static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
FLOAT *buffer[DIVIDE_RATE];
BLASLONG k, lda, ldc;
BLASLONG m_from, m_to, n_from, n_to;
FLOAT *alpha, *beta;
FLOAT *a, *c;
job_t *job = (job_t *)args -> common;
BLASLONG xxx, bufferside;
BLASLONG ls, min_l, jjs, min_jj;
BLASLONG is, min_i, div_n;
BLASLONG i, current;
#ifdef LOWER
BLASLONG start_i;
#endif
#ifdef TIMING
BLASLONG rpcc_counter;
BLASLONG copy_A = 0;
BLASLONG copy_B = 0;
BLASLONG kernel = 0;
BLASLONG waiting1 = 0;
BLASLONG waiting2 = 0;
BLASLONG waiting3 = 0;
BLASLONG waiting6[MAX_CPU_NUMBER];
BLASLONG ops = 0;
for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
#endif
k = K;
a = (FLOAT *)A;
c = (FLOAT *)C;
lda = LDA;
ldc = LDC;
alpha = (FLOAT *)args -> alpha;
beta = (FLOAT *)args -> beta;
m_from = 0;
m_to = N;
/* Global Range */
n_from = 0;
n_to = N;
if (range_n) {
m_from = range_n[mypos + 0];
m_to = range_n[mypos + 1];
n_from = range_n[0];
n_to = range_n[args -> nthreads];
}
if (beta) {
#if !defined(COMPLEX) || defined(HERK)
if (beta[0] != ONE)
#else
if ((beta[0] != ONE) || (beta[1] != ZERO))
#endif
syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc);
}
if ((k == 0) || (alpha == NULL)) return 0;
if ((alpha[0] == ZERO)
#if defined(COMPLEX) && !defined(HERK)
&& (alpha[1] == ZERO)
#endif
) return 0;
#if 0
fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", mypos, m_from, m_to, n_from, n_to);
#endif
div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE
+ GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
buffer[0] = sb;
for (i = 1; i < DIVIDE_RATE; i++) {
buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
}
for(ls = 0; ls < k; ls += min_l){
min_l = k - ls;
if (min_l >= GEMM_Q * 2) {
min_l = GEMM_Q;
} else {
if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
}
min_i = m_to - m_from;
if (min_i >= GEMM_P * 2) {
min_i = GEMM_P;
} else {
if (min_i > GEMM_P) {
min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
}
}
#ifdef LOWER
xxx = (m_to - m_from - min_i) % GEMM_P;
if (xxx) min_i -= GEMM_P - xxx;
#endif
START_RPCC();
#ifndef LOWER
ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
#else
ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_to - min_i, sa);
#endif
STOP_RPCC(copy_A);
div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE
+ GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
START_RPCC();
/* Make sure if no one is using buffer */
#ifndef LOWER
for (i = 0; i < mypos; i++)
#else
for (i = mypos + 1; i < args -> nthreads; i++)
#endif
while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
STOP_RPCC(waiting1);
#ifndef LOWER
for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
min_jj = MIN(m_to, xxx + div_n) - jjs;
if (xxx == m_from) {
if (min_jj > min_i) min_jj = min_i;
} else {
if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
}
START_RPCC();
OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs,
buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE);
STOP_RPCC(copy_B);
START_RPCC();
KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE,
c, ldc, m_from, jjs);
STOP_RPCC(kernel);
#ifdef TIMING
ops += 2 * min_i * min_jj * min_l;
#endif
}
#else
for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
min_jj = MIN(m_to, xxx + div_n) - jjs;
if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
START_RPCC();
OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs,
buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE);
STOP_RPCC(copy_B);
START_RPCC();
KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE,
c, ldc, m_to - min_i, jjs);
STOP_RPCC(kernel);
#ifdef TIMING
ops += 2 * min_i * min_jj * min_l;
#endif
}
#endif
#ifndef LOWER
for (i = 0; i <= mypos; i++)
#else
for (i = mypos; i < args -> nthreads; i++)
#endif
job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
WMB;
}
#ifndef LOWER
current = mypos + 1;
while (current < args -> nthreads) {
#else
current = mypos - 1;
while (current >= 0) {
#endif
div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE
+ GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
START_RPCC();
/* thread has to wait */
while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
STOP_RPCC(waiting2);
START_RPCC();
#ifndef LOWER
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
c, ldc,
m_from,
xxx);
#else
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
c, ldc,
m_to - min_i,
xxx);
#endif
STOP_RPCC(kernel);
#ifdef TIMING
ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
#endif
if (m_to - m_from == min_i) {
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
}
}
#ifndef LOWER
current ++;
#else
current --;
#endif
}
#ifndef LOWER
for(is = m_from + min_i; is < m_to; is += min_i){
min_i = m_to - is;
#else
start_i = min_i;
for(is = m_from; is < m_to - start_i; is += min_i){
min_i = m_to - start_i - is;
#endif
if (min_i >= GEMM_P * 2) {
min_i = GEMM_P;
} else
if (min_i > GEMM_P) {
min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
}
START_RPCC();
ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
STOP_RPCC(copy_A);
current = mypos;
do {
div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE
+ GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
START_RPCC();
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
c, ldc, is, xxx);
STOP_RPCC(kernel);
#ifdef TIMING
ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
#endif
#ifndef LOWER
if (is + min_i >= m_to) {
#else
if (is + min_i >= m_to - start_i) {
#endif
/* Thread doesn't need this buffer any more */
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
WMB;
}
}
#ifndef LOWER
current ++;
} while (current != args -> nthreads);
#else
current --;
} while (current >= 0);
#endif
}
}
START_RPCC();
for (i = 0; i < args -> nthreads; i++) {
if (i != mypos) {
for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
}
}
}
STOP_RPCC(waiting3);
#ifdef TIMING
BLASLONG waiting = waiting1 + waiting2 + waiting3;
BLASLONG total = copy_A + copy_B + kernel + waiting;
fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
(double)waiting1 /(double)total * 100.,
(double)waiting2 /(double)total * 100.,
(double)waiting3 /(double)total * 100.,
(double)ops/(double)kernel / 4. * 100.);
#if 0
fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
mypos, copy_A, copy_B, waiting);
fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
mypos,
(double)waiting1/(double)waiting * 100.,
(double)waiting2/(double)waiting * 100.,
(double)waiting3/(double)waiting * 100.);
#endif
fprintf(stderr, "\n");
#endif
return 0;
}
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
blas_arg_t newarg;
job_t job[MAX_CPU_NUMBER];
blas_queue_t queue[MAX_CPU_NUMBER];
BLASLONG range[MAX_CPU_NUMBER + 100];
BLASLONG num_cpu;
BLASLONG nthreads = args -> nthreads;
BLASLONG width, i, j, k;
BLASLONG n, n_from, n_to;
int mode, mask;
double dnum;
if ((nthreads == 1) || (args -> n < nthreads * SWITCH_RATIO)) {
SYRK_LOCAL(args, range_m, range_n, sa, sb, 0);
return 0;
}
#ifndef COMPLEX
#ifdef XDOUBLE
mode = BLAS_XDOUBLE | BLAS_REAL;
mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
#elif defined(DOUBLE)
mode = BLAS_DOUBLE | BLAS_REAL;
mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1;
#else
mode = BLAS_SINGLE | BLAS_REAL;
mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1;
#endif
#else
#ifdef XDOUBLE
mode = BLAS_XDOUBLE | BLAS_COMPLEX;
mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
#elif defined(DOUBLE)
mode = BLAS_DOUBLE | BLAS_COMPLEX;
mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1;
#else
mode = BLAS_SINGLE | BLAS_COMPLEX;
mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1;
#endif
#endif
newarg.m = args -> m;
newarg.n = args -> n;
newarg.k = args -> k;
newarg.a = args -> a;
newarg.b = args -> b;
newarg.c = args -> c;
newarg.lda = args -> lda;
newarg.ldb = args -> ldb;
newarg.ldc = args -> ldc;
newarg.alpha = args -> alpha;
newarg.beta = args -> beta;
newarg.common = (void *)job;
if (!range_n) {
n_from = 0;
n_to = args -> n;
} else {
n_from = range_n[0];
n_to = range_n[1] - range_n[0];
}
#ifndef LOWER
range[MAX_CPU_NUMBER] = n_to - n_from;
range[0] = 0;
num_cpu = 0;
i = 0;
n = n_to - n_from;
dnum = (double)n * (double)n /(double)nthreads;
while (i < n){
if (nthreads - num_cpu > 1) {
double di = (double)i;
width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask);
if (num_cpu == 0) width = n - ((n - width) & ~mask);
if ((width > n - i) || (width < mask)) width = n - i;
} else {
width = n - i;
}
range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = inner_thread;
queue[num_cpu].args = &newarg;
queue[num_cpu].range_m = range_m;
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i += width;
}
for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
#else
range[0] = 0;
num_cpu = 0;
i = 0;
n = n_to - n_from;
dnum = (double)n * (double)n /(double)nthreads;
while (i < n){
if (nthreads - num_cpu > 1) {
double di = (double)i;
width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask);
if ((width > n - i) || (width < mask)) width = n - i;
} else {
width = n - i;
}
range[num_cpu + 1] = range[num_cpu] + width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = inner_thread;
queue[num_cpu].args = &newarg;
queue[num_cpu].range_m = range_m;
queue[num_cpu].range_n = range;
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i += width;
}
#endif
newarg.nthreads = num_cpu;
if (num_cpu) {
for (j = 0; j < num_cpu; j++) {
for (i = 0; i < num_cpu; i++) {
for (k = 0; k < DIVIDE_RATE; k++) {
job[j].working[i][CACHE_LINE_SIZE * k] = 0;
}
}
}
queue[0].sa = sa;
queue[0].sb = sb;
queue[num_cpu - 1].next = NULL;
exec_blas(num_cpu, queue);
}
return 0;
}