#pragma once
#ifndef TCG_MESH_HPP
#define TCG_MESH_HPP
// tcg includes
#include "../mesh.h"
namespace tcg {
//************************************************************************
// Polygon Mesh methods
//************************************************************************
template <typename V, typename E, typename F>
int Mesh<V, E, F>::edgeInciding(int vIdx1, int vIdx2, int n) const {
const V &v1 = vertex(vIdx1);
const tcg::list<int> &incidingV1 = v1.edges();
tcg::list<int>::const_iterator it;
for (it = incidingV1.begin(); it != incidingV1.end(); ++it) {
const E &e = edge(*it);
if (e.otherVertex(vIdx1) == vIdx2 && n-- == 0) break;
}
return (it == incidingV1.end()) ? -1 : (*it);
}
//-------------------------------------------------------------------------
template <typename V, typename E, typename F>
int Mesh<V, E, F>::addEdge(const E &ed) {
int e = int(m_edges.push_back(ed));
m_edges[e].setIndex(e);
// Add the edge index to the edge's vertices
typename edge_traits<E>::vertices_const_iterator it, end(ed.verticesEnd());
for (it = ed.verticesBegin(); it != end; ++it) m_vertices[*it].addEdge(e);
return e;
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
int Mesh<V, E, F>::addFace(const F &fc) {
int f = int(m_faces.push_back(fc));
m_faces[f].setIndex(f);
// Add the face index to the face's edges
typename face_traits<F>::edges_const_iterator it, end = fc.edgesEnd();
for (it = fc.edgesBegin(); it != end; ++it) m_edges[*it].addFace(f);
return f;
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
void Mesh<V, E, F>::removeVertex(int v) {
V &vx = vertex(v);
// As long as there are incident edges, remove them
while (vx.edgesCount() > 0) removeEdge(vx.edges().front());
m_vertices.erase(v);
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
void Mesh<V, E, F>::removeEdge(int e) {
E &ed = edge(e);
// Remove all the associated faces
typename edge_traits<E>::faces_iterator ft;
while ((ft = ed.facesBegin()) !=
ed.facesEnd()) // current iterator could be erased here!
removeFace(*ft);
// Remove the edge from the associated vertices
typename edge_traits<E>::vertices_iterator vt, vEnd = ed.verticesEnd();
for (vt = ed.verticesBegin(); vt != vEnd; ++vt) {
V &vx = vertex(*vt);
typename vertex_traits<V>::edges_iterator et =
std::find(vx.edgesBegin(), vx.edgesEnd(), e);
assert(et != vx.edgesEnd());
vx.eraseEdge(et);
}
m_edges.erase(e);
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
void Mesh<V, E, F>::removeFace(int f) {
F &fc = face(f);
// Remove the face from all adjacent edges
typename face_traits<F>::edges_iterator et, eEnd = fc.edgesEnd();
for (et = fc.edgesBegin(); et != eEnd; ++et) {
E &ed = edge(*et);
typename edge_traits<E>::faces_iterator ft =
std::find(ed.facesBegin(), ed.facesEnd(), f);
assert(ft != ed.facesEnd());
ed.eraseFace(ft);
}
m_faces.erase(f);
}
//---------------------------------------------------------------------------------------------
/*!
\brief Remaps the mesh indices in a natural order, removing unused cells in
the internal
container model, for minimum memory consumption.
\warning This is a slow operation, compared to all the others in the Mesh
class.
*/
template <typename V, typename E, typename F>
void Mesh<V, E, F>::squeeze() {
// Build new indices for remapping.
typename tcg::list<F>::iterator it, endI(m_faces.end());
int i;
for (i = 0, it = m_faces.begin(); it != endI; ++i, ++it) it->setIndex(i);
typename tcg::list<E>::iterator jt, endJ(m_edges.end());
for (i = 0, jt = m_edges.begin(); jt != endJ; ++i, ++jt) jt->setIndex(i);
typename tcg::list<V>::iterator kt, endK(m_vertices.end());
for (i = 0, kt = m_vertices.begin(); kt != endK; ++i, ++kt) kt->setIndex(i);
// Update stored indices
for (it = m_faces.begin(); it != endI; ++it) {
F &face = *it;
typename face_traits<F>::edges_iterator et, eEnd = face.edgesEnd();
for (et = face.edgesBegin(); et != eEnd; ++et) *et = edge(*et).getIndex();
}
for (jt = m_edges.begin(); jt != endJ; ++jt) {
E &edge = *jt;
typename edge_traits<E>::vertices_iterator vt, vEnd = edge.verticesEnd();
for (vt = edge.verticesBegin(); vt != vEnd; ++vt)
*vt = vertex(*vt).getIndex();
typename edge_traits<E>::faces_iterator ft, fEnd = edge.facesEnd();
for (ft = edge.facesBegin(); ft != fEnd; ++ft) *ft = face(*ft).getIndex();
}
tcg::list<int>::iterator lt;
for (kt = m_vertices.begin(); kt != endK; ++kt) {
V &vertex = *kt;
typename vertex_traits<V>::edges_iterator et, eEnd = vertex.edgesEnd();
for (et = vertex.edgesBegin(); et != eEnd; ++et) *et = edge(*et).getIndex();
}
// Finally, rebuild the actual containers
if (!m_faces.empty()) {
tcg::list<F> temp(m_faces.begin(), m_faces.end());
std::swap(m_faces, temp);
}
if (!m_edges.empty()) {
tcg::list<E> temp(m_edges.begin(), m_edges.end());
std::swap(m_edges, temp);
}
if (!m_vertices.empty()) {
tcg::list<V> temp(m_vertices.begin(), m_vertices.end());
std::swap(m_vertices, temp);
}
}
//************************************************************************
// Triangular Mesh methods
//************************************************************************
template <typename V, typename E, typename F>
TriMesh<V, E, F>::TriMesh(int verticesHint) {
int edgesHint = (3 * verticesHint) / 2;
m_vertices.reserve(verticesHint);
m_edges.reserve(edgesHint);
m_faces.reserve(edgesHint + 1); // Since V - E + F = 1 for planar graphs (no
// outer face), and vMin == 0
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
int TriMesh<V, E, F>::addFace(V &vx1, V &vx2, V &vx3) {
int v1 = vx1.getIndex(), v2 = vx2.getIndex(), v3 = vx3.getIndex();
// Retrieve the edges having v1, v2, v3 in common
int e1, e2, e3;
e1 = this->edgeInciding(v1, v2);
e2 = this->edgeInciding(v2, v3);
e3 = this->edgeInciding(v3, v1);
if (e1 < 0) e1 = this->addEdge(E(v1, v2));
if (e2 < 0) e2 = this->addEdge(E(v2, v3));
if (e3 < 0) e3 = this->addEdge(E(v3, v1));
F fc;
fc.addEdge(e1), fc.addEdge(e2), fc.addEdge(e3);
int f = int(m_faces.push_back(fc));
m_faces[f].setIndex(f);
E &E1 = this->edge(e1);
E1.addFace(f);
E &E2 = this->edge(e2);
E2.addFace(f);
E &E3 = this->edge(e3);
E3.addFace(f);
return f;
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
int TriMesh<V, E, F>::otherFaceVertex(int f, int e) const {
const F &face = Mesh<V, E, F>::face(f);
const E &otherEdge =
face.edge(0) == e ? this->edge(face.edge(1)) : this->edge(face.edge(0));
int v1 = this->edge(e).vertex(0), v2 = this->edge(e).vertex(1),
v3 = otherEdge.otherVertex(v1);
return (v3 == v2) ? otherEdge.otherVertex(v2) : v3;
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
int TriMesh<V, E, F>::otherFaceEdge(int f, int v) const {
const F &face = Mesh<V, E, F>::face(f);
{
const E &ed = this->edge(face.edge(0));
if (ed.vertex(0) != v && ed.vertex(1) != v) return face.edge(0);
}
{
const E &ed = this->edge(face.edge(1));
if (ed.vertex(0) != v && ed.vertex(1) != v) return face.edge(1);
}
return face.edge(2);
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
int TriMesh<V, E, F>::swapEdge(int e) {
E &ed = this->edge(e);
if (ed.facesCount() < 2) return -1;
int f1 = ed.face(0), f2 = ed.face(1);
// Retrieve the 2 vertices not belonging to e in the adjacent faces
int v1 = ed.vertex(0), v2 = ed.vertex(1);
int v3 = otherFaceVertex(f1, e), v4 = otherFaceVertex(f2, e);
assert(this->edgeInciding(v3, v4) < 0);
// Remove e
this->removeEdge(e);
// Insert the new faces
addFace(v1, v3, v4); // Inserts edge E(v3, v4)
addFace(v2, v4, v3);
return this->edgeInciding(v3, v4);
}
//---------------------------------------------------------------------------------------------
/*
*---*---* Common case * FORBIDDEN case:
/ \ / x / \ /|\ note that the collapsed edge
*---*-x-X---* /_*_\ have 3 (possibly more) other
vertices
\ / \ x \ / *--X--* with edges inciding both the
collapsed
*---*---* \ / edge's extremes.
\ /
* This cannot be processed,
since the
unexpected merged edge would
either have
more than 2 adjacent faces,
or a hole.
*/
template <typename V, typename E, typename F>
int TriMesh<V, E, F>::collapseEdge(int e) {
E &ed = this->edge(e);
// First, retrieve ed's adjacent vertices
int vKeep = ed.vertex(0), vDelete = ed.vertex(1);
V &vxKeep = this->vertex(vKeep), &vxDelete = this->vertex(vDelete);
// Then, retrieve the 2 vertices not belonging to e in the adjacent faces
int f, fCount = ed.facesCount();
int otherV[2];
for (f = 0; f != fCount; ++f) otherV[f] = otherFaceVertex(ed.face(f), e);
// Remove e
this->removeEdge(e);
// Merge edges inciding vDelete and otherV with the corresponding inciding
// vKeep and otherV
for (f = 0; f != fCount; ++f) {
int srcE = this->edgeInciding(vDelete, otherV[f]),
dstE = this->edgeInciding(vKeep, otherV[f]);
E &srcEd = this->edge(srcE), &dstEd = this->edge(dstE);
typename edge_traits<E>::faces_iterator ft = srcEd.facesBegin();
while (ft != srcEd.facesEnd()) // current iterator will be erased
{
F &fc = this->face(*ft);
(fc.edge(0) == srcE) ? fc.setEdge(0, dstE)
: (fc.edge(1) == srcE) ? fc.setEdge(1, dstE)
: fc.setEdge(2, dstE);
dstEd.addFace(*ft);
ft = srcEd.eraseFace(ft); // here
}
this->removeEdge(srcE);
}
// Move further edges adjacent to vDelete to vKeep
typename vertex_traits<V>::edges_iterator et = vxDelete.edgesBegin();
while (et != vxDelete.edgesEnd()) // current iterator will be erased
{
E &ed = this->edge(*et);
// Ensure that there is no remaining edge which would be duplicated
// after vDelete and vKeep merge
/* FIXME: Omitted for now because it is warned that there is no edgeInciding */
#if 0
assert("Detected vertex adjacent to collapsed edge's endpoints, but not to its faces." &&
edgeInciding(ed.otherVertex(vDelete), vKeep) < 0);
#endif
(ed.vertex(0) == vDelete) ? ed.setVertex(0, vKeep) : ed.setVertex(1, vKeep);
vxKeep.addEdge(*et);
et = vxDelete.eraseEdge(et); // here
}
// Finally, update vKeep's position and remove vDelete
vxKeep.P() = 0.5 * (vxKeep.P() + vxDelete.P());
m_vertices.erase(vDelete);
return vKeep;
}
//---------------------------------------------------------------------------------------------
template <typename V, typename E, typename F>
int TriMesh<V, E, F>::splitEdge(int e) {
E &ed = this->edge(e);
// Build a new vertex on the middle of e
int v1 = ed.vertex(0), v2 = ed.vertex(1);
V &vx1 = this->vertex(v1), &vx2 = this->vertex(v2);
V v(0.5 * (vx1.P() + vx2.P()));
int vIdx = this->addVertex(v);
// Retrieve opposite vertices
int otherV[2]; // NOTE: If ever extended to support edges with
int f,
fCount =
ed.facesCount(); // MORE than 2 adjacent faces, the new faces
// should be inserted BEFORE removing the split
for (f = 0; f != fCount; ++f) // edge.
otherV[f] = otherFaceVertex(ed.face(f), e);
// Remove e
this->removeEdge(e);
// Add the new edges
this->addEdge(E(v1, vIdx));
this->addEdge(E(vIdx, v2));
// Add the new faces
for (f = 0; f != fCount; ++f)
addFace(v1, vIdx, otherV[f]), addFace(vIdx, v2, otherV[f]);
return vIdx;
}
} // namespace tcg
#endif // TCG_MESH_HPP